这一题我自己的写法一开始WA(没考虑长度l=r情况)
后来超时了(从长度为1开始依次遍历)
看了官方题解也没有看懂(我太弱了)
最后看了讨论区的题解终于看懂了
本题做法是利用异或前缀和来寻找子段异或为0
先记录下每个i位置处的前缀和
比如我们现在要取[l,r]范围内的字段,使得a[l]⊕a[l+1] ⊕a[l+2]…⊕a[r]为0,即让(前缀和数组为dp) dp[l-1]=dp[r]即可,这里dp[l-1]=a[0]⊕a[1] ⊕a[2]…⊕a[l-1],dp[r]=a[0]⊕a[1]⊕a[2]…⊕a[r]
我们知道当a⊕b=0时,a=b
还有就是a⊕0=a
所以当dp[l]==dp[r]的时候,dp[r]=dp[l-1]⊕(a[l]⊕a[l+1]…⊕a[r])=dp[l-1]
所以a[l]⊕a[l+1]…⊕a[r]==0
所以这一题的解法就是求出i点处异或前缀和在前面出现过几次即可
注意本题按题解来说,字段长度为1,且为0时候也要算入
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
map<long long ,long long > m; //记录相应大小异或前缀和的数目
int n;
int main()
{
cin>>n;
int res=0; //记录异或前缀和
int a;
long long ans=0;
m[0]=1;
for(int i=0;i<n;i++)
{
scanf("%d",&a);
res^=a;
ans+=m[res];
m[res]++;
}
cout<<ans<<endl;
return 0;
}