寒假集训6 C.汉诺塔(Dilworth+最长下降序列)

本文深入探讨了Dilworth定理及其在算法竞赛中的应用,详细讲解了如何通过求解最长不下降子序列来确定序列中连续上升子序列的最小数目,提供了一个具体实例的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://ac.nowcoder.com/acm/contest/3007/C在这里插入图片描述在这里插入图片描述题解做法:
在这里插入图片描述
Dilworth定理:一个序列中,连续上升子序列的最小数目(组数)=最长不下降序列的长度,反之也成立。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct node
{
	int x;
	int y;
	int pos;
}a[100010];
int len;
int n;
int maxdec[100010];
int range[100010];
bool cmp(node a,node b)
{
	return a.x<b.x;
}
	
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d",&a[i].x,&a[i].y);
		a[i].pos=i;
	}
	sort(a+1,a+n+1,cmp);
	//最长下降子序列求法
	//len为最大长度,也就是最少的组数
	//maxdec数组保存这个最长的序列
	//因为本题的特殊性,range数组保存每个元素属于哪一个分组中
	for(int i=1;i<=n;i++)
	{
		int le=1;
		int r=len;
		while(le<=r)
		{
			int mid=(le+r)/2;
			if(maxdec[mid]<a[i].y)
				r=mid-1;
			else
				le=mid+1;
		}
		//le指向第一个大于等于a[i].y的位置
		maxdec[le]=a[i].y;
		if(le>len) len=le;
		range[a[i].pos]=le;
	}
	cout<<len<<endl;
	for(int i=1;i<=n;i++)
		cout<<range[i]<<" ";
	cout<<endl;
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Buyi.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值