0.总结
这里总结程序员在使用latex 语法常用到的公式。
1.写一个分式
$$
\frac{a}{b}
$$
的结果就是
ab
\frac{a}{b}
ba
2.写一个上下标
下标:
下标只有一个数字时:$a_i$
下标有多个数字时,需要用{}包起来:$a_{ij}$
效果分别是: aia_iai , aija_{ij}aij
上标:
上标只有一个数字时:$a^i$
上标有多个数字时,需要用{}包起来:$a^{ij}$
效果分别是:aia^iai,aija^{ij}aij
将上面两者合在一起就可以得到一个较为复杂的表达式了。例如,代码:
$$
\frac{d_w}{d_x} = a^2x+y
$$
就可以得到如下的效果:
dwdx=a2x+y
\frac{d_w}{d_x} = a^2x+y
dxdw=a2x+y
3.写一个公式块
$$
\left
\{
\begin{aligned}
x&=1\\
y&=2\\
z&=xy
\end{aligned}
\right.
$$
其执行效果如下:
{x=1y=1z=xy
\left
\{
\begin{aligned}
x&=1 \\
y&=1 \\
z& =xy
\end{aligned}
\right.
⎩⎪⎨⎪⎧xyz=1=1=xy
详细说一下上面这个公式
\{
是 将大括号做了转义;\left
到\end{aligned}
说明是左半部分的公式是什么样子;但是有个问题就是aligned 表示的是什么意思?我不是很理解。
也可以像下面这么写:
$$
\left
\{
\begin{array}{l}
x=1\\
y=2+x
\end{array}
\right.
$$
得到的效果如下:
{x=1y=2+x
\left
\{
\begin{array}{l}
x=1\\
y=2+x
\end{array}
\right.
{x=1y=2+x
\begin{array}{l}
中的{l}
表示左对齐,同理{r}
则表示右对齐,{}
则表示居中
4.常用的字母表示
$\alpha$,$\beta$,$\gamma$,$\theta$,
分别就得到如下的表示:
α\alphaα,β\betaβ,γ\gammaγ,θ\thetaθ
5.常用上下角标
- 用\hat{Z} => z^\hat{z}z^
6.等式块(不带左括号)
$$
\begin{aligned}
\alpha_0 &= \mathop{\arg\min}_{\alpha_0} f(x^0 - \alpha \nabla f(x^0) )\\
&=\mathop{\arg\min}_{\alpha_0 \geq 0} (0+(2+2\alpha-3)^2+4(-1-1024\alpha+5)^4)\\
&=\mathop{\arg\min}_{\alpha_0 \geq 0} \phi(\alpha)
\end{aligned}
$$
效果:
α0=argminα0f(x0−α∇f(x0))=argminα0≥0(0+(2+2α−3)2+4(−1−1024α+5)4)=argminα0≥0ϕ(α)
\begin{aligned}
\alpha_0 &= \mathop{\arg\min}_{\alpha_0} f(x^0 - \alpha \nabla f(x^0) )\\
&=\mathop{\arg\min}_{\alpha_0 \geq 0} (0+(2+2\alpha-3)^2+4(-1-1024\alpha+5)^4)\\
&=\mathop{\arg\min}_{\alpha_0 \geq 0} \phi(\alpha)
\end{aligned}
α0=argminα0f(x0−α∇f(x0))=argminα0≥0(0+(2+2α−3)2+4(−1−1024α+5)4)=argminα0≥0ϕ(α)