程序员常用latex公式集锦

本文详细介绍如何使用LaTeX语法编辑数学公式,包括分式、上下标、公式块、等式块等多种公式类型的具体写法及展示效果。适用于初学者快速掌握LaTeX公式编辑技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.总结

这里总结程序员在使用latex 语法常用到的公式。

1.写一个分式

$$
\frac{a}{b}
$$

的结果就是
ab \frac{a}{b} ba

2.写一个上下标

下标:

下标只有一个数字时:$a_i$
下标有多个数字时,需要用{}包起来:$a_{ij}$

效果分别是: aia_iai , aija_{ij}aij
上标:

上标只有一个数字时:$a^i$
上标有多个数字时,需要用{}包起来:$a^{ij}$

效果分别是:aia^iaiaija^{ij}aij

将上面两者合在一起就可以得到一个较为复杂的表达式了。例如,代码:

$$
\frac{d_w}{d_x} = a^2x+y
$$

就可以得到如下的效果:
dwdx=a2x+y \frac{d_w}{d_x} = a^2x+y dxdw=a2x+y

3.写一个公式块

$$
\left
\{
\begin{aligned} 
x&=1\\
y&=2\\
z&=xy
\end{aligned}
\right.
$$

其执行效果如下:
{x=1y=1z=xy \left \{ \begin{aligned} x&=1 \\ y&=1 \\ z& =xy \end{aligned} \right. xyz=1=1=xy

详细说一下上面这个公式

  • \{ 是 将大括号做了转义;
  • \left\end{aligned} 说明是左半部分的公式是什么样子;但是有个问题就是aligned 表示的是什么意思?我不是很理解。

也可以像下面这么写:

$$ 
\left
\{
\begin{array}{l}
x=1\\
y=2+x
\end{array}
\right.
$$

得到的效果如下:
{x=1y=2+x \left \{ \begin{array}{l} x=1\\ y=2+x \end{array} \right. {x=1y=2+x

  • \begin{array}{l}中的{l}表示左对齐,同理{r}则表示右对齐,{}则表示居中

4.常用的字母表示

$\alpha$,$\beta$,$\gamma$,$\theta$,

分别就得到如下的表示:
α\alphaαβ\betaβγ\gammaγθ\thetaθ

5.常用上下角标

  • 用\hat{Z} => z^\hat{z}z^

6.等式块(不带左括号)

$$
\begin{aligned}
\alpha_0 &= \mathop{\arg\min}_{\alpha_0} f(x^0 - \alpha \nabla f(x^0) )\\
&=\mathop{\arg\min}_{\alpha_0 \geq 0} (0+(2+2\alpha-3)^2+4(-1-1024\alpha+5)^4)\\
&=\mathop{\arg\min}_{\alpha_0 \geq 0} \phi(\alpha)
\end{aligned}
$$

效果:
α0=arg⁡min⁡α0f(x0−α∇f(x0))=arg⁡min⁡α0≥0(0+(2+2α−3)2+4(−1−1024α+5)4)=arg⁡min⁡α0≥0ϕ(α) \begin{aligned} \alpha_0 &= \mathop{\arg\min}_{\alpha_0} f(x^0 - \alpha \nabla f(x^0) )\\ &=\mathop{\arg\min}_{\alpha_0 \geq 0} (0+(2+2\alpha-3)^2+4(-1-1024\alpha+5)^4)\\ &=\mathop{\arg\min}_{\alpha_0 \geq 0} \phi(\alpha) \end{aligned} α0=argminα0f(x0αf(x0))=argminα00(0+(2+2α3)2+4(11024α+5)4)=argminα00ϕ(α)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值