详细解读WordNet计算相似度的几种方法

本文探讨了LawsonAbs视角下六种关键的语义相关度计算方法,包括Leacock-Chodorow、Wu-Palmer、Resnik、Jiang-Conrath和Lin相似度。通过实例解释和原理分析,帮助读者理解如何在本体图中评估词语之间的意义关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LawsonAbs的认知与思考,望各位读者审慎阅读。

总结

  • 文章来源:CSDN_LawsonAbs
  • 本文总结若干种语义相关度计算的方法
  • 持续更新~

1 语义相似度和语义相关度

一般说来: 语 义 相 似 度 ∈ 语 义 相 关 度 语义相似度 \in 语义相关度

2 Leacock-Chodorow Similarity

基于连接(所要求解的)两种sense的最短路径 和 这两种sense出现分类的最大深度。计算的值是: − l o g p 2 d -log\frac{p}{2d} log2dp。其中p就是这两个含义(也就是这两个单词)最短路径长度, d 为分类深度。

其表达式即是: S i m i l a r i t y ( a , b ) = − l o g L e n ( a , b ) 2 ∗ D Similarity(a,b) = -log\frac{Len(a,b)}{2 * D} Similarity(a,b)=log2DLen(a,b)
其中 a,b 分别为本体图中的两个概念, Len(a,b) 为a,b 的最短路径长度, D 为本体图的最大深度。所谓本体图指的就是该词语所在的词图。

3 Wu-Palmer Similarity

评分标准:两种含义在分类上的深度以及它们最近的公共祖先节点

4 Resnik Similarity

基于最近公共祖先的信息内容(IC)。需要注意的是:对于使用这种方法计算相似度时,结果依赖于生成信息内容的语料库,同时也依赖于这种信息内容如果被创建。

关于 Resnik Similarity ,这是Resnik 提出的一种计算相关系的方法,文章是《Using Information Content to Evaluate Semantic Similarity in a Taxonomy》。可以在这里查看

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

5 Jiang-Conrath Similarity

6 Lin Similarity

在这里插入图片描述

参考文章

  • 杨方颖. 基于本体结构的语义相似度计算
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值