LawsonAbs的认知与思考,望各位读者审慎阅读。
总结
- 文章来源:CSDN_LawsonAbs
- 本文总结若干种语义相关度计算的方法
- 持续更新~
1 语义相似度和语义相关度
一般说来: 语 义 相 似 度 ∈ 语 义 相 关 度 语义相似度 \in 语义相关度 语义相似度∈语义相关度
2 Leacock-Chodorow Similarity
基于连接(所要求解的)两种sense的最短路径 和 这两种sense出现分类的最大深度。计算的值是: − l o g p 2 d -log\frac{p}{2d} −log2dp。其中p就是这两个含义(也就是这两个单词)最短路径长度, d 为分类深度。
其表达式即是:
S
i
m
i
l
a
r
i
t
y
(
a
,
b
)
=
−
l
o
g
L
e
n
(
a
,
b
)
2
∗
D
Similarity(a,b) = -log\frac{Len(a,b)}{2 * D}
Similarity(a,b)=−log2∗DLen(a,b)
其中 a,b 分别为本体图中的两个概念, Len(a,b)
为a,b 的最短路径长度, D 为本体图的最大深度。所谓本体图指的就是该词语所在的词图。
3 Wu-Palmer Similarity
评分标准:两种含义在分类上的深度以及它们最近的公共祖先节点
4 Resnik Similarity
基于最近公共祖先的信息内容(IC
)。需要注意的是:对于使用这种方法计算相似度时,结果依赖于生成信息内容的语料库,同时也依赖于这种信息内容如果被创建。
关于 Resnik Similarity ,这是Resnik 提出的一种计算相关系的方法,文章是《Using Information Content to Evaluate Semantic Similarity in a Taxonomy》。可以在这里查看
5 Jiang-Conrath Similarity
6 Lin Similarity
参考文章
- 杨方颖. 基于本体结构的语义相似度计算