关于计算中的“同余式”以及取模等问题

本文详细介绍了同余运算的基本概念及性质,包括同余的定义、同余的运算规则及其证明,并探讨了同余在实际计算中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

同余运算及其基本性质

    100除以7的余数是2,意思就是说把100个东西七个七个分成一组的话最后还剩2个。余数有一个严格的定义:假如被除数是a,除数是b(假设它们均为正整数),那么我们总能够找到一个小于b的自然数r和一个整数m,使得a=bm+r。这个r就是a除以b的余数,m被称作商。我们经常用mod来表示取余,a除以b余r就写成a mod b = r。
    如果两个数a和b之差能被m整除,那么我们就说a和b对模数m同余(关于m同余)。比如,100-60除以8正好除尽,我们就说100和60对于模数8同余。它的另一层含义就是说,100和60除以8的余数相同。a和b对m同余,我们记作a≡b(mod m)。比如,刚才的例子可以写成100≡60(mod 8)。你会发现这种记号到处都在用,比如和数论相关的书中就经常把a mod 3 = 1写作a≡1(mod 3)。
    之所以把同余当作一种运算,是因为同余满足运算的诸多性质。比如,同余满足等价关系。具体地说,它满足自反性(一个数永远和自己同余)、对称性(a和b同余,b和a也就同余)和传递性(a和b同余,b和c同余可以推出a和c同余)。这三个性质都是显然的。
    同余运算里还有稍微复杂一些的性质。比如,同余运算和整数加减法一样满足“等量加等量,其和不变”。小学我们就知道,等式两边可以同时加上一个相等的数。例如,a=b可以推出a+100=b+100。这样的性质在同余运算中也有:对于同一个模数m,如果a和b同余,x和y同余,那么a+x和b+y也同余。在我看来,这个结论几乎是显然的。当然,我们也可以严格证明这个定理。这个定理对减法同样有效。

    性质:如果a≡b(mod m),x≡y(mod m),则a+x≡b+y(mod m)。
    证明:条件告诉我们,可以找到p和q使得a-mp = b-mq,也存在r和s使得x-mr = y-ms。于是a-mp + x-mr = b-mq + y-ms,即a+x-m(p+r) = b+y-m(q+s),这就告诉我们a+x和b+y除以m的余数相同。

    容易想到,两个同余式对应相乘,同余式两边仍然相等:
    如果a≡b(mod m),x≡y(mod m),则ax≡by(mod m)。
    证明:条件告诉我们,a-mp = b-mq,x-mr = y-ms。于是(a-mp)(x-mr) = (b-mq)(y-ms),等式两边分别展开后必然是ax-m(…) = by-m(…)的形式,这就说明ax≡by(mod m)。

    现在你知道为什么有的题要叫你“输出答案mod xxxxx的结果”了吧,那是为了避免高精度运算,因为这里的结论告诉我们在运算过程中边算边mod和算完后再mod的结果一样。假如a是一个很大的数,令b=a mod m,那么(a * 100) mod m和(b * 100) mod m的结果是完全一样的,这相当于是在a≡b (mod m)的两边同时乘以100。这些结论其实都很显然,因为同余运算只关心余数(不关心“整的部分”),完全可以每一次运算后都只保留余数。因此,整个运算过程中参与运算的数都不超过m,避免了高精度的出现。

    在证明Fermat小定理时,我们用到了这样一个定理:
    如果ac≡bc(mod m),且c和m互质,则a≡b(mod m) (就是说同余式两边可以同时除以一个和模数互质的数)。
    证明:条件告诉我们,ac-mp = bc-mq,移项可得ac-bc = mp-mq,也就是说(a-b)c = m(p-q)。这表明,(a-b)c里需要含有因子m,但c和m互质,因此只有可能是a-b被m整除,也即a≡b(mod m)。

<think>好的,我现在需要详细解释用户提到的运算的具体步骤以及反向代入最后一步的推导过程。用户之前的问题是关于RSA私钥指数d的计算,特别是反向代入的最后一步如何得到结果。根据用户当前的提问,他们希望更深入理解这一过程,可能与数学或编程中的算法相关。 首先,我需要回顾之前的回答,确保自己正确理解了反向代入的步骤。在之前的例子中,使用扩展欧几里得算法分解了192和7,得到余数后反向代入,最终得到d=55。用户现在想了解运算的具体实现和反向代入的最后一步推导过程。 首先,运算的具体步骤。运算在这里用于验证7*55 ≡1 mod 192是否成立。计算7*55=385,然后385除以192,商是2,余数1,所以385 mod 192=1,从而证明d=55是正确的。这里的运算是求余数的过程,这在编程中通常用%运算符实现,例如在Python中385%192的结果是1。 接下来是反向代入的最后一步推导过程。在扩展欧几里得算法中,我们通过分解步骤得到各个余数,然后从最后一个非零余数开始反向代入。例如,分解步骤中得到192=7×27+3,7=3×2+1,3=1×3+0。最后一个非零余数是1,此时我们得到1=7-3×2。然后,将3替换为192-7×27,得到1=7 - (192-7×27)×2,展开后合并同类项,得到1=7×55 - 192×2。这一步的关键在于将中间步骤的余数表达式代入,逐步消去前面的变量,最终得到关于e和φ(n)的线性组合,从而找到d的值。 需要确认的是,用户是否理解如何将各个分解步骤中的余数代入,以及合并同类项的过程。可能需要更详细地展开代数步骤,确保每一步的推导都清晰。例如,在替换3之后,展开括号时是否正确处理了符号,以及如何将7的系数从27扩展到55。 此外,用户可能对如何从代数推导过渡到实际的逆元计算感兴趣,这里需要强调运算的性质,即等式两边的操作如何保持同余关系,从而得到正确的d值。 还要考虑用户可能的疑问点,例如为什么选择这样的分解方式,或者如何处理更长的分解链,这时候可能需要提到扩展欧几里得算法的一般步骤,即不断用余数替换除数,直到余数为零,然后反向代入。 在编程实现方面,可能需要简要提及如何用代码实现扩展欧几里得算法,递归或迭代的方式,以及如何处理负数结果的情况,例如通过加上数来调整到正数范围。 最后,需要确保引用之前的参考文献,例如引用[^2]和[^4],说明复杂度分析和数学预备知识的相关性,以及数据结构与算法中的实际应用,如引用[^3]提到的分片处理,虽然与当前问题关联不大,但可以适当忽略,专注于数学推导部分。 总结思考步骤:先明确运算的验证过程,再详细拆解反向代入的代数步骤,确保每一步都清晰,最后关联到算法实现和可能的编程应用,同时引用相关文献支持解释。</think>### 运算实现与反向代入最后一步的推导详解 --- #### 一、运算的具体实现步骤 在RSA私钥计算中,运算用于验证等式$e \cdot d \equiv 1 \mod \phi(n)$。以示例$e=7$, $\phi(n)=192$, $d=55$为例: 1. **计算乘积**: $$7 \times 55 = 385$$ 2. **求运算**: 计算$385$除以$192$的余数: $$385 \div 192 = 2 \text{(商)},余数=1$$ 因此: $$385 \mod 192 = 1 \quad \text{(成立)}$$[^2] 3. **编程实现**: 在Python中可直接使用`%`运算符验证: ```python print(7 * 55 % 192) # 输出1 ``` --- #### 二、反向代入最后一步的推导过程 **目标**:从扩展欧几里得算法的分解步骤推导出$d=55$。 ##### 步骤1:正向分解 分解$\phi(n)=192$与$e=7$: $$ \begin{align*} 192 &= 7 \times 27 + 3 \quad &(1) \\ 7 &= 3 \times 2 + 1 \quad &(2) \\ 3 &= 1 \times 3 + 0 \quad &(3) \\ \end{align*} $$ ##### 步骤2:反向代入(关键推导) **从最后一个非零余数1开始**: 1. **由式(2)**: $$1 = 7 - 3 \times 2 \quad (4)$$ 2. **替换式(1)**中的余数$3$: 由式(1):$3 = 192 - 7 \times 27$,代入式(4): $$ 1 = 7 - (192 - 7 \times 27) \times 2 \\ = 7 - 192 \times 2 + 7 \times 54 \quad \text{(展开括号)} \\ = 7 \times (1 + 54) - 192 \times 2 \quad \text{(合并同类项)} \\ = 7 \times 55 - 192 \times 2 \quad (5) $$ 3. **运算的意义**: 式(5)两边对$\phi(n)=192$: $$7 \times 55 \equiv 1 \mod 192$$ 因此,$d=55$即为私钥指数。 --- #### 三、关键数学原理 1. **线性组合性质**: 扩展欧几里得算法的核心是将最大公约数表示为输入数的线性组合: $$\gcd(a,b) = a \cdot x + b \cdot y$$ 2. **逆元的存在条件**: 当$\gcd(e, \phi(n))=1$时,$e$在$\phi(n)$下有唯一逆元$d$。 --- #### 四、编程中的实现逻辑 以递归实现扩展欧几里得算法为例: ```python def extended_gcd(a, b): if b == 0: return (a, 1, 0) else: gcd, x, y = extended_gcd(b, a % b) return (gcd, y, x - (a // b) * y) # 计算d=55 gcd, d, k = extended_gcd(7, 192) print(d % 192) # 输出55 ``` **逻辑解释**: - 递归终止条件:当$b=0$时,$\gcd(a,0)=a$,此时$x=1$, $y=0$。 - 递归返回时,通过反向代入更新$x$和$y$,最终得到$d$。 --- #### 五、反向代入的数学本质 **代数视角**: 反向代入本质是**逆向解线性方程组**的过程。以分解步骤为例: - 式(2): $1 = 7 - 3 \times 2$ - 式(1): $3 = 192 - 7 \times 27$ 通过代入消元,最终将$1$表示为$7$和$192$的线性组合,从而提出$d=55$。 --- ### 相关问题 1. **如何证明扩展欧几里得算法的正确性?** **答案**:通过数学归纳法证明每一步的余数保持$\gcd(a,b)$的线性组合形式。 2. **当$d$为负数时如何调整?** **答案**:利用运算周期性,$d = d + k \cdot \phi(n)$,例如若$d=-5$,则$d=187$(当$\phi(n)=192$时)[^2]。 3. **运算在密码学中的其他应用?** **答案**:幂运算(如RSA加密)、椭圆曲线密码学中的点运算等均依赖运算[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值