动手学CV-Pytorch计算机视觉 目标检测基本概念

本文介绍了目标检测在计算机视觉中的重要性,对比了它与图像分类的区别。详细阐述了基于深度学习的目标检测思路,从滑窗方法到候选框分类与微调。此外,讨论了目标框的定义方式和IoU(交并比)的概念,强调了它们在模型训练、测试和评价中的关键作用。最后,对本小节内容进行了小结,预告了接下来将探讨的数据集VOC和数据读取方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.1.1 什么是目标检测

目标检测是计算机视觉中的一个重要任务,近年来传统目标检测方法已经难以满足人们对目标检测效果的要求,随着深度学习在计算机视觉任务上取得的巨大进展,目前基于深度学习的目标检测算法已经成为主流。

相比较于基于深度学习的图像分类任务,目标检测任务更具难度。

具体区别如图3-1所示。

图像分类:只需要判断输入的图像中是否包含感兴趣物体。

目标检测:需要在识别出图片中目标类别的基础上,还要精确定位到目标的具体位置,并用外接矩形框标出。

请添加图片描述

图3-1 分类和目标检测任务示意图

3.1.2 目标检测的思路

自2012年Alex Krizhevsky凭借Alex在ImageNet图像分类挑战赛中拿下冠军之后,深度学习在图像识别尤其是图像分类领域开始大放异彩,大众的视野也重新回到深度神经网络中。紧接着,不断有更深更复杂的网络出现,一再刷新ImageNet图像分类比赛的记录。

大家发现,通过合理的构造,神经网络可以用来预测各种各样的实际问题。于是人们开始了基于CNN的目标检测研究, 但是随着进一步的探索大家发现,似乎CNN并不善于直接预测坐标信息。并且一幅图像中可能出现的物体个数也是不定的,模型如何构建也比较棘手。

因此,人们就想,如果知道

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT狂飙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值