分享一份Unet代码(多类和单类都有)和一些关于分割的想法

前言

最近研究了三种分割算法,deeplab-v3-plus,FCN,还有Une。FCN是分割网络的开山之作,可以用来学习,deeplab-v3-plus速度比较慢,精度更高,代码改起来比较复杂。落地的话首选还是UNET,相比较与目标检测的网络,代码简单到爆炸,也推荐作为深度学习的入门网络。

网络结构

可以看到整个网络结构是一个U型的结构,前面部分通过pooling进行下采样,后面部分通过反卷积上采样。中间通过concatenate进行拼接。

inputs = Input((PIXEL, PIXEL, 3))
s = Lambda(lambda x: x / 255) (inputs)
conv1 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(s)
pool1 = AveragePooling2D(pool_size=(2, 2))(conv1)  # 16

conv2 = BatchNormalization(momentum=0.99)(pool1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = BatchNormalization(momentum=0.99)(conv2)
conv2 = Conv2D(64, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = Dropout(0.02)(conv2)
pool2 = AveragePooling2D(pool_size=(2, 2))(conv2)  # 8

conv3 = BatchNormalization(momentum=0.99)(pool2)
conv3 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值