Returning Values from Bash Functions

本文介绍了Bash脚本中函数如何返回值给调用者的方法。由于Bash函数不支持传统的返回值机制,文章详细解释了通过设置全局变量、使用命令替换以及传递结果变量名称等三种方式来实现这一目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bash functions, unlike functions in most programming languages do not allow you to return a value to the caller. When a bash function ends its return value is its status: zero for success, non-zero for failure. To return values, you can set a global variable with the result, or use command substitution, or you can pass in the name of a variable to use as the result variable. The examples below describe these different mechanisms.

Although bash has a return statement, the only thing you can specify with it is the function's status, which is a numeric value like the value specified in an exit statement. The status value is stored in the $?variable. If a function does not contain a return statement, its status is set based on the status of the last statement executed in the function. To actually return arbitrary values to the caller you must use other mechanisms.

The simplest way to return a value from a bash function is to just set a global variable to the result. Since all variables in bash are global by default this is easy:

function myfunc()
{
    myresult='some value'
}

myfunc
echo $myresult

The code above sets the global variable myresult to the function result. Reasonably simple, but as we all know, using global variables, particularly in large programs, can lead to difficult to find bugs.

A better approach is to use local variables in your functions. The problem then becomes how do you get the result to the caller. One mechanism is to use command substitution:

function myfunc()
{
    local  myresult='some value'
    echo "$myresult"
}

result=$(myfunc)   # or result=`myfunc`
echo $result

Here the result is output to the stdout and the caller uses command substitution to capture the value in a variable. The variable can then be used as needed.

The other way to return a value is to write your function so that it accepts a variable name as part of its command line and then set that variable to the result of the function:

function myfunc()
{
    local  __resultvar=$1
    local  myresult='some value'
    eval $__resultvar="'$myresult'"
}

myfunc result
echo $result

Since we have the name of the variable to set stored in a variable, we can't set the variable directly, we have to use eval to actually do the setting. The eval statement basically tells bash to interpret the line twice, the first interpretation above results in the string result='somevalue' which is then interpreted once more and ends up setting the caller's variable.

When you store the name of the variable passed on the command line, make sure you store it in a local variable with a name that won't be (unlikely to be) used by the caller (which is why I used __resultvarrather than just resultvar). If you don't, and the caller happens to choose the same name for their result variable as you use for storing the name, the result variable will not get set. For example, the following does not work:

function myfunc()
{
    local  result=$1
    local  myresult='some value'
    eval $result="'$myresult'"
}

myfunc result
echo $result

The reason it doesn't work is because when eval does the second interpretation and evaluates result='some value'result is now a local variable in the function, and so it gets set rather than setting the caller's result variable.

For more flexibility, you may want to write your functions so that they combine both result variables and command substitution:

function myfunc()
{
    local  __resultvar=$1
    local  myresult='some value'
    if [[ "$__resultvar" ]]; then
        eval $__resultvar="'$myresult'"
    else
        echo "$myresult"
    fi
}

myfunc result
echo $result
result2=$(myfunc)
echo $result2

Here, if no variable name is passed to the function, the value is output to the standard output.


http://www.linuxjournal.com/content/return-values-bash-functions

______________________

Mitch Frazier is an Associate Editor for Linux Journal.

#下面程序运行时报错: C:\Users\Administrator\AppData\Local\Programs\Python\Python312\python.exe C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\transformers\utils\generic.py Traceback (most recent call last): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\transformers\utils\generic.py", line 34, in <module> from ..utils import logging ImportError: attempted relative import with no known parent package 进程已结束,退出代码为 1 ------------------------------------------------------------------------------------------------ import inspect import json import os import tempfile import warnings from collections import OrderedDict, UserDict, defaultdict from collections.abc import Iterable, MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import dataclass, fields, is_dataclass from enum import Enum from functools import partial, wraps from typing import Any, Callable, ContextManager, Optional, TypedDict import numpy as np from packaging import version from ..utils import logging from .import_utils import ( get_torch_version, is_flax_available, is_mlx_available, is_tf_available, is_torch_available, is_torch_fx_proxy, requires, ) _CAN_RECORD_REGISTRY = {} logger = logging.get_logger(__name__) if is_torch_available(): # required for @can_return_tuple decorator to work with torchdynamo import torch # noqa: F401 from ..model_debugging_utils import model_addition_debugger_context class cached_property(property): """ Descriptor that mimics @property but caches output in member variable. From tensorflow_datasets Built-in in functools from Python 3.8. """ def __get__(self, obj, objtype=None): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") attr = "__cached_" + self.fget.__name__ cached = getattr(obj, attr, None) if cached is None: cached = self.fget(obj) setattr(obj, attr, cached) return cached # vendored from distutils.util def strtobool(val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'val' is anything else. """ val = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}") def infer_framework_from_repr(x): """ Tries to guess the framework of an object `x` from its repr (brittle but will help in `is_tensor` to try the frameworks in a smart order, without the need to import the frameworks). """ representation = str(type(x)) if representation.startswith("<class 'torch."): return "pt" elif representation.startswith("<class 'tensorflow."): return "tf" elif representation.startswith("<class 'jax"): return "jax" elif representation.startswith("<class 'numpy."): return "np" elif representation.startswith("<class 'mlx."): return "mlx" def _get_frameworks_and_test_func(x): """ Returns an (ordered since we are in Python 3.7+) dictionary framework to test function, which places the framework we can guess from the repr first, then Numpy, then the others. """ framework_to_test = { "pt": is_torch_tensor, "tf": is_tf_tensor, "jax": is_jax_tensor, "np": is_numpy_array, "mlx": is_mlx_array, } preferred_framework = infer_framework_from_repr(x) # We will test this one first, then numpy, then the others. frameworks = [] if preferred_framework is None else [preferred_framework] if preferred_framework != "np": frameworks.append("np") frameworks.extend([f for f in framework_to_test if f not in [preferred_framework, "np"]]) return {f: framework_to_test[f] for f in frameworks} def is_tensor(x): """ Tests if `x` is a `torch.Tensor`, `tf.Tensor`, `jaxlib.xla_extension.DeviceArray`, `np.ndarray` or `mlx.array` in the order defined by `infer_framework_from_repr` """ # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(x) for test_func in framework_to_test_func.values(): if test_func(x): return True # Tracers if is_torch_fx_proxy(x): return True if is_flax_available(): from jax.core import Tracer if isinstance(x, Tracer): return True return False def _is_numpy(x): return isinstance(x, np.ndarray) def is_numpy_array(x): """ Tests if `x` is a numpy array or not. """ return _is_numpy(x) def _is_torch(x): import torch return isinstance(x, torch.Tensor) def is_torch_tensor(x): """ Tests if `x` is a torch tensor or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch(x) def _is_torch_device(x): import torch return isinstance(x, torch.device) def is_torch_device(x): """ Tests if `x` is a torch device or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_device(x) def _is_torch_dtype(x): import torch if isinstance(x, str): if hasattr(torch, x): x = getattr(torch, x) else: return False return isinstance(x, torch.dtype) def is_torch_dtype(x): """ Tests if `x` is a torch dtype or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_dtype(x) def _is_tensorflow(x): import tensorflow as tf return isinstance(x, tf.Tensor) def is_tf_tensor(x): """ Tests if `x` is a tensorflow tensor or not. Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tensorflow(x) def _is_tf_symbolic_tensor(x): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(tf, "is_symbolic_tensor"): return tf.is_symbolic_tensor(x) return isinstance(x, tf.Tensor) def is_tf_symbolic_tensor(x): """ Tests if `x` is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tf_symbolic_tensor(x) def _is_jax(x): import jax.numpy as jnp # noqa: F811 return isinstance(x, jnp.ndarray) def is_jax_tensor(x): """ Tests if `x` is a Jax tensor or not. Safe to call even if jax is not installed. """ return False if not is_flax_available() else _is_jax(x) def _is_mlx(x): import mlx.core as mx return isinstance(x, mx.array) def is_mlx_array(x): """ Tests if `x` is a mlx array or not. Safe to call even when mlx is not installed. """ return False if not is_mlx_available() else _is_mlx(x) def to_py_obj(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list. """ if isinstance(obj, (int, float)): return obj elif isinstance(obj, (dict, UserDict)): return {k: to_py_obj(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): try: arr = np.array(obj) if np.issubdtype(arr.dtype, np.integer) or np.issubdtype(arr.dtype, np.floating): return arr.tolist() except Exception: pass return [to_py_obj(o) for o in obj] framework_to_py_obj = { "pt": lambda obj: obj.tolist(), "tf": lambda obj: obj.numpy().tolist(), "jax": lambda obj: np.asarray(obj).tolist(), "np": lambda obj: obj.tolist(), } # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_py_obj[framework](obj) # tolist also works on 0d np arrays if isinstance(obj, np.number): return obj.tolist() else: return obj def to_numpy(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a Numpy array. """ framework_to_numpy = { "pt": lambda obj: obj.detach().cpu().numpy(), "tf": lambda obj: obj.numpy(), "jax": lambda obj: np.asarray(obj), "np": lambda obj: obj, } if isinstance(obj, (dict, UserDict)): return {k: to_numpy(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): return np.array(obj) # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_numpy[framework](obj) return obj class ModelOutput(OrderedDict): """ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular python dictionary. <Tip warning={true}> You can't unpack a `ModelOutput` directly. Use the [`~utils.ModelOutput.to_tuple`] method to convert it to a tuple before. </Tip> """ def __init_subclass__(cls) -> None: """Register subclasses as pytree nodes. This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with `static_graph=True` with modules that output `ModelOutput` subclasses. """ if is_torch_available(): if version.parse(get_torch_version()) >= version.parse("2.2"): from torch.utils._pytree import register_pytree_node register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), serialized_type_name=f"{cls.__module__}.{cls.__name__}", ) else: from torch.utils._pytree import _register_pytree_node _register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Subclasses of ModelOutput must use the @dataclass decorator # This check is done in __init__ because the @dataclass decorator operates after __init_subclass__ # issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed # Just need to check that the current class is not ModelOutput is_modeloutput_subclass = self.__class__ != ModelOutput if is_modeloutput_subclass and not is_dataclass(self): raise TypeError( f"{self.__module__}.{self.__class__.__name__} is not a dataclass." " This is a subclass of ModelOutput and so must use the @dataclass decorator." ) def __post_init__(self): """Check the ModelOutput dataclass. Only occurs if @dataclass decorator has been used. """ class_fields = fields(self) # Safety and consistency checks if not len(class_fields): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") first_field = getattr(self, class_fields[0].name) other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(first_field): if isinstance(first_field, dict): iterator = first_field.items() first_field_iterator = True else: try: iterator = iter(first_field) first_field_iterator = True except TypeError: first_field_iterator = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(iterator): if not isinstance(element, (list, tuple)) or len(element) != 2 or not isinstance(element[0], str): if idx == 0: # If we do not have an iterator of key/values, set it as attribute self[class_fields[0].name] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self, element[0], element[1]) if element[1] is not None: self[element[0]] = element[1] elif first_field is not None: self[class_fields[0].name] = first_field else: for field in class_fields: v = getattr(self, field.name) if v is not None: self[field.name] = v def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__(self, k): if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, name, value): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(name, value) super().__setattr__(name, value) def __setitem__(self, key, value): # Will raise a KeyException if needed super().__setitem__(key, value) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(key, value) def __reduce__(self): if not is_dataclass(self): return super().__reduce__() callable, _args, *remaining = super().__reduce__() args = tuple(getattr(self, field.name) for field in fields(self)) return callable, args, *remaining def to_tuple(self) -> tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys()) if is_torch_available(): import torch.utils._pytree as _torch_pytree def _model_output_flatten(output: ModelOutput) -> tuple[list[Any], "_torch_pytree.Context"]: return list(output.values()), list(output.keys()) def _model_output_unflatten( values: Iterable[Any], context: "_torch_pytree.Context", output_type=None, ) -> ModelOutput: return output_type(**dict(zip(context, values))) if version.parse(get_torch_version()) >= version.parse("2.2"): _torch_pytree.register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), serialized_type_name=f"{ModelOutput.__module__}.{ModelOutput.__name__}", ) else: _torch_pytree._register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), ) class ExplicitEnum(str, Enum): """ Enum with more explicit error message for missing values. """ @classmethod def _missing_(cls, value): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}" ) class PaddingStrategy(ExplicitEnum): """ Possible values for the `padding` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ LONGEST = "longest" MAX_LENGTH = "max_length" DO_NOT_PAD = "do_not_pad" class TensorType(ExplicitEnum): """ Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ PYTORCH = "pt" TENSORFLOW = "tf" NUMPY = "np" JAX = "jax" MLX = "mlx" class ContextManagers: """ Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers` in the `fastcore` library. """ def __init__(self, context_managers: list[ContextManager]): self.context_managers = context_managers self.stack = ExitStack() def __enter__(self): for context_manager in self.context_managers: self.stack.enter_context(context_manager) def __exit__(self, *args, **kwargs): self.stack.__exit__(*args, **kwargs) def can_return_loss(model_class): """ Check if a given model can return loss. Args: model_class (`type`): The class of the model. """ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def find_labels(model_class): """ Find the labels used by a given model. Args: model_class (`type`): The class of the model. """ model_name = model_class.__name__ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def flatten_dict(d: MutableMapping, parent_key: str = "", delimiter: str = "."): """Flatten a nested dict into a single level dict.""" def _flatten_dict(d, parent_key="", delimiter="."): for k, v in d.items(): key = str(parent_key) + delimiter + str(k) if parent_key else k if v and isinstance(v, MutableMapping): yield from flatten_dict(v, key, delimiter=delimiter).items() else: yield key, v return dict(_flatten_dict(d, parent_key, delimiter)) @contextmanager def working_or_temp_dir(working_dir, use_temp_dir: bool = False): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def transpose(array, axes=None): """ Framework-agnostic version of `numpy.transpose` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.transpose(array, axes=axes) elif is_torch_tensor(array): return array.T if axes is None else array.permute(*axes) elif is_tf_tensor(array): import tensorflow as tf return tf.transpose(array, perm=axes) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.transpose(array, axes=axes) else: raise ValueError(f"Type not supported for transpose: {type(array)}.") def reshape(array, newshape): """ Framework-agnostic version of `numpy.reshape` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.reshape(array, newshape) elif is_torch_tensor(array): return array.reshape(*newshape) elif is_tf_tensor(array): import tensorflow as tf return tf.reshape(array, newshape) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.reshape(array, newshape) else: raise ValueError(f"Type not supported for reshape: {type(array)}.") def squeeze(array, axis=None): """ Framework-agnostic version of `numpy.squeeze` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.squeeze(array, axis=axis) elif is_torch_tensor(array): return array.squeeze() if axis is None else array.squeeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.squeeze(array, axis=axis) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.squeeze(array, axis=axis) else: raise ValueError(f"Type not supported for squeeze: {type(array)}.") def expand_dims(array, axis): """ Framework-agnostic version of `numpy.expand_dims` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.expand_dims(array, axis) elif is_torch_tensor(array): return array.unsqueeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.expand_dims(array, axis=axis) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.expand_dims(array, axis=axis) else: raise ValueError(f"Type not supported for expand_dims: {type(array)}.") def tensor_size(array): """ Framework-agnostic version of `numpy.size` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.size(array) elif is_torch_tensor(array): return array.numel() elif is_tf_tensor(array): import tensorflow as tf return tf.size(array) elif is_jax_tensor(array): return array.size else: raise ValueError(f"Type not supported for tensor_size: {type(array)}.") def infer_framework(model_class): """ Infers the framework of a given model without using isinstance(), because we cannot guarantee that the relevant classes are imported or available. """ for base_class in inspect.getmro(model_class): module = base_class.__module__ name = base_class.__name__ if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch") or name == "PreTrainedModel": return "pt" elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}.") def torch_int(x): """ Casts an input to a torch int64 tensor if we are in a tracing context, otherwise to a Python int. """ if not is_torch_available(): return int(x) import torch return x.to(torch.int64) if torch.jit.is_tracing() and isinstance(x, torch.Tensor) else int(x) def torch_float(x): """ Casts an input to a torch float32 tensor if we are in a tracing context, otherwise to a Python float. """ if not is_torch_available(): return int(x) import torch return x.to(torch.float32) if torch.jit.is_tracing() and isinstance(x, torch.Tensor) else int(x) def filter_out_non_signature_kwargs(extra: Optional[list] = None): """ Decorator to filter out named arguments that are not in the function signature. This decorator ensures that only the keyword arguments that match the function's signature, or are specified in the `extra` list, are passed to the function. Any additional keyword arguments are filtered out and a warning is issued. Parameters: extra (`Optional[list]`, *optional*): A list of extra keyword argument names that are allowed even if they are not in the function's signature. Returns: Callable: A decorator that wraps the function and filters out invalid keyword arguments. Example usage: ```python @filter_out_non_signature_kwargs(extra=["allowed_extra_arg"]) def my_function(arg1, arg2, **kwargs): print(arg1, arg2, kwargs) my_function(arg1=1, arg2=2, allowed_extra_arg=3, invalid_arg=4) # This will print: 1 2 {"allowed_extra_arg": 3} # And issue a warning: "The following named arguments are not valid for `my_function` and were ignored: 'invalid_arg'" ``` """ extra = extra or [] extra_params_to_pass = set(extra) def decorator(func): sig = inspect.signature(func) function_named_args = set(sig.parameters.keys()) valid_kwargs_to_pass = function_named_args.union(extra_params_to_pass) # Required for better warning message is_instance_method = "self" in function_named_args is_class_method = "cls" in function_named_args # Mark function as decorated func._filter_out_non_signature_kwargs = True @wraps(func) def wrapper(*args, **kwargs): valid_kwargs = {} invalid_kwargs = {} for k, v in kwargs.items(): if k in valid_kwargs_to_pass: valid_kwargs[k] = v else: invalid_kwargs[k] = v if invalid_kwargs: invalid_kwargs_names = [f"'{k}'" for k in invalid_kwargs] invalid_kwargs_names = ", ".join(invalid_kwargs_names) # Get the class name for better warning message if is_instance_method: cls_prefix = args[0].__class__.__name__ + "." elif is_class_method: cls_prefix = args[0].__name__ + "." else: cls_prefix = "" warnings.warn( f"The following named arguments are not valid for `{cls_prefix}{func.__name__}`" f" and were ignored: {invalid_kwargs_names}", UserWarning, stacklevel=2, ) return func(*args, **valid_kwargs) return wrapper return decorator class TransformersKwargs(TypedDict, total=False): """ Keyword arguments to be passed to the loss function Attributes: num_items_in_batch (`Optional[torch.Tensor]`, *optional*): Number of items in the batch. It is recommended to pass it when you are doing gradient accumulation. output_hidden_states (`Optional[bool]`, *optional*): Most of the models support outputing all hidden states computed during the forward pass. output_attentions (`Optional[bool]`, *optional*): Turn this on to return the intermediary attention scores. output_router_logits (`Optional[bool]`, *optional*): For MoE models, this allows returning the router logits to compute the loss. cumulative_seqlens_q (`torch.LongTensor`, *optional*) Gets cumulative sequence length for query state. cumulative_seqlens_k (`torch.LongTensor`, *optional*) Gets cumulative sequence length for key state. max_length_q (`int`, *optional*): Maximum sequence length for query state. max_length_k (`int`, *optional*): Maximum sequence length for key state. """ num_items_in_batch: Optional["torch.Tensor"] output_hidden_states: Optional[bool] output_attentions: Optional[bool] output_router_logits: Optional[bool] cumulative_seqlens_q: Optional["torch.LongTensor"] cumulative_seqlens_k: Optional["torch.LongTensor"] max_length_q: Optional[int] max_length_k: Optional[int] def is_timm_config_dict(config_dict: dict[str, Any]) -> bool: """Checks whether a config dict is a timm config dict.""" return "pretrained_cfg" in config_dict def is_timm_local_checkpoint(pretrained_model_path: str) -> bool: """ Checks whether a checkpoint is a timm model checkpoint. """ if pretrained_model_path is None: return False # in case it's Path, not str pretrained_model_path = str(pretrained_model_path) is_file = os.path.isfile(pretrained_model_path) is_dir = os.path.isdir(pretrained_model_path) # pretrained_model_path is a file if is_file and pretrained_model_path.endswith(".json"): with open(pretrained_model_path) as f: config_dict = json.load(f) return is_timm_config_dict(config_dict) # pretrained_model_path is a directory with a config.json if is_dir and os.path.exists(os.path.join(pretrained_model_path, "config.json")): with open(os.path.join(pretrained_model_path, "config.json")) as f: config_dict = json.load(f) return is_timm_config_dict(config_dict) return False def set_attribute_for_modules(module: "torch.nn.Module", key: str, value: Any): """ Set a value to a module and all submodules. """ setattr(module, key, value) for submodule in module.children(): set_attribute_for_modules(submodule, key, value) def del_attribute_from_modules(module: "torch.nn.Module", key: str): """ Delete a value from a module and all submodules. """ # because we might remove it previously in case it's a shared module, e.g. activation function if hasattr(module, key): delattr(module, key) for submodule in module.children(): del_attribute_from_modules(submodule, key) def can_return_tuple(func): """ Decorator to wrap model method, to call output.to_tuple() if return_dict=False passed as a kwarg or use_return_dict=False is set in the config. Note: output.to_tuple() convert output to tuple skipping all `None` values. """ @wraps(func) def wrapper(self, *args, **kwargs): return_dict = self.config.return_dict if hasattr(self, "config") else True return_dict_passed = kwargs.pop("return_dict", return_dict) if return_dict_passed is not None: return_dict = return_dict_passed output = func(self, *args, **kwargs) if not return_dict and not isinstance(output, tuple): output = output.to_tuple() return output return wrapper # if is_torch_available(): # @torch._dynamo.disable @dataclass @requires(backends=("torch",)) class OutputRecorder: """ Configuration for recording outputs from a model via hooks. Attributes: target_class (Type): The class (e.g., nn.Module) to which the hook will be attached. index (Optional[int]): If the output is a tuple/list, optionally record only at a specific index. layer_name (Optional[str]): Name of the submodule to target (if needed), e.g., "transformer.layer.3.attn". class_name (Optional[str]): Name of the class to which the hook will be attached. Could be the suffix of class name in some cases. """ target_class: "type[torch.nn.Module]" index: Optional[int] = 0 layer_name: Optional[str] = None class_name: Optional[str] = None def check_model_inputs(func): """ Decorator to intercept specific layer outputs without using hooks. Compatible with torch.compile (Dynamo tracing). """ @wraps(func) def wrapper(self, *args, **kwargs): use_cache = kwargs.get("use_cache") if use_cache is None: use_cache = getattr(self.config, "use_cache", False) return_dict = kwargs.pop("return_dict", None) if return_dict is None: return_dict = getattr(self.config, "return_dict", True) if getattr(self, "gradient_checkpointing", False) and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False kwargs["use_cache"] = use_cache all_args = kwargs.copy() if "kwargs" in all_args: for k, v in all_args["kwargs"].items(): all_args[k] = v capture_flags = _CAN_RECORD_REGISTRY.get(str(self.__class__), {}) # there is a weak ref for executorch recordable_keys = { f"output_{k}": all_args.get( f"output_{k}", getattr( self.config, f"output_{k}", all_args.get("output_attentions", getattr(self.config, "output_attentions", False)), ), ) for k in capture_flags } collected_outputs = defaultdict(tuple) monkey_patched_layers = [] def make_capture_wrapper(module, orig_forward, key, index): @wraps(orig_forward) def wrapped_forward(*args, **kwargs): if key == "hidden_states" and len(collected_outputs[key]) == 0: collected_outputs[key] += (args[0],) if kwargs.get("debug_io", False): with model_addition_debugger_context( module, kwargs.get("debug_io_dir", "~/model_debug"), kwargs.get("prune_layers") ): output = orig_forward(*args, **kwargs) else: output = orig_forward(*args, **kwargs) if not isinstance(output, tuple): collected_outputs[key] += (output,) elif output[index] is not None: if key not in collected_outputs: collected_outputs[key] = (output[index],) else: collected_outputs[key] += (output[index],) return output return wrapped_forward if any(recordable_keys.values()): capture_tasks = [] for key, layer_specs in capture_flags.items(): if not recordable_keys.get(f"output_{key}", False): continue if not isinstance(layer_specs, list): layer_specs = [layer_specs] for specs in layer_specs: if not isinstance(specs, OutputRecorder): index = 0 if "hidden_states" in key else 1 class_name = None if not isinstance(specs, str) else specs target_class = specs if not isinstance(specs, str) else None specs = OutputRecorder(target_class=target_class, index=index, class_name=class_name) capture_tasks.append((key, specs)) for name, module in self.named_modules(): for key, specs in capture_tasks: # The second check is for multimodals where only backbone layer suffix is available if (specs.target_class is not None and isinstance(module, specs.target_class)) or ( specs.class_name is not None and name.endswith(specs.class_name) ): if specs.layer_name is not None and specs.layer_name not in name: continue # Monkey patch forward original_forward = module.forward module.forward = make_capture_wrapper(module, original_forward, key, specs.index) monkey_patched_layers.append((module, original_forward)) outputs = func(self, *args, **kwargs) # Restore original forward methods for module, original_forward in monkey_patched_layers: module.forward = original_forward # Inject collected outputs into model output for key in collected_outputs: if key == "hidden_states": collected_outputs[key] = collected_outputs[key][:-1] if hasattr(outputs, "vision_hidden_states"): collected_outputs[key] += (outputs.vision_hidden_states,) elif hasattr(outputs, "last_hidden_state"): collected_outputs[key] += (outputs.last_hidden_state,) outputs[key] = collected_outputs[key] elif key == "attentions": if isinstance(capture_flags[key], list) and len(capture_flags[key]) == 2: outputs[key] = collected_outputs[key][0::2] outputs["cross_" + key] = collected_outputs[key][1::2] else: outputs[key] = collected_outputs[key] else: outputs[key] = collected_outputs[key] if return_dict is False: outputs = outputs.to_tuple() return outputs return wrapper class GeneralInterface(MutableMapping): """ Dict-like object keeping track of a class-wide mapping, as well as a local one. Allows to have library-wide modifications though the class mapping, as well as local modifications in a single file with the local mapping. """ # Class instance object, so that a call to `register` can be reflected into all other files correctly, even if # a new instance is created (in order to locally override a given function) _global_mapping = {} def __init__(self): self._local_mapping = {} def __getitem__(self, key): # First check if instance has a local override if key in self._local_mapping: return self._local_mapping[key] return self._global_mapping[key] def __setitem__(self, key, value): # Allow local update of the default functions without impacting other instances self._local_mapping.update({key: value}) def __delitem__(self, key): del self._local_mapping[key] def __iter__(self): # Ensure we use all keys, with the overwritten ones on top return iter({**self._global_mapping, **self._local_mapping}) def __len__(self): return len(self._global_mapping.keys() | self._local_mapping.keys()) @classmethod def register(cls, key: str, value: Callable): cls._global_mapping.update({key: value}) def valid_keys(self) -> list[str]: return list(self.keys())
08-08
[root@hadoop01 apache-hive-3.1.3-bin]# $HIVE_HOME/bin/hive which: no hbase in (/export/servers/hadoop-3.3.5/bin::/export/servers/apache-hive-3.1.3-bin/bin:/export/servers/flume-1.9.0/bin::/export/servers/apache-hive-3.1.3-bin/bin:/export/servers/flume-1.9.0/bin:/export/servers/flume-1.9.0/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/export/servers/jdk1.8.0_161/bin:/export/servers/hadoop-3.3.5/bin:/export/servers/hadoop-3.3.5/sbin:/export/servers/scala-2.12.10/bin:/root/bin:/export/servers/jdk1.8.0_161/bin:/export/servers/hadoop-3.3.5/bin:/export/servers/hadoop-3.3.5/sbin:/export/servers/scala-2.12.10/bin:/export/servers/jdk1.8.0_161/bin:/export/servers/hadoop-3.3.5/bin:/export/servers/hadoop-3.3.5/sbin:/export/servers/scala-2.12.10/bin:/root/bin) 2025-06-17 19:30:31,773 INFO conf.HiveConf: Found configuration file file:/export/servers/apache-hive-3.1.3-bin/conf/hive-site.xml Hive Session ID = b6ee71f0-5d43-4149-99c7-808d6c553bb8 2025-06-17 19:30:36,006 INFO SessionState: Hive Session ID = b6ee71f0-5d43-4149-99c7-808d6c553bb8 Logging initialized using configuration in jar:file:/export/servers/apache-hive-3.1.3-bin/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true 2025-06-17 19:30:36,195 INFO SessionState: Logging initialized using configuration in jar:file:/export/servers/apache-hive-3.1.3-bin/lib/hive-common-3.1.3.jar!/hive-log4j2.properties Async: true 2025-06-17 19:30:40,759 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/b6ee71f0-5d43-4149-99c7-808d6c553bb8 2025-06-17 19:30:40,863 INFO session.SessionState: Created local directory: /tmp/root/b6ee71f0-5d43-4149-99c7-808d6c553bb8 2025-06-17 19:30:40,874 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/b6ee71f0-5d43-4149-99c7-808d6c553bb8/_tmp_space.db 2025-06-17 19:30:40,916 INFO conf.HiveConf: Using the default value passed in for log id: b6ee71f0-5d43-4149-99c7-808d6c553bb8 2025-06-17 19:30:40,916 INFO session.SessionState: Updating thread name to b6ee71f0-5d43-4149-99c7-808d6c553bb8 main 2025-06-17 19:30:43,385 INFO metastore.HiveMetaStore: 0: Opening raw store with implementation class:org.apache.hadoop.hive.metastore.ObjectStore 2025-06-17 19:30:43,505 WARN metastore.ObjectStore: datanucleus.autoStartMechanismMode is set to unsupported value null . Setting it to value: ignored 2025-06-17 19:30:43,521 INFO metastore.ObjectStore: ObjectStore, initialize called 2025-06-17 19:30:43,523 INFO conf.MetastoreConf: Found configuration file file:/export/servers/apache-hive-3.1.3-bin/conf/hive-site.xml 2025-06-17 19:30:43,526 INFO conf.MetastoreConf: Unable to find config file hivemetastore-site.xml 2025-06-17 19:30:43,526 INFO conf.MetastoreConf: Found configuration file null 2025-06-17 19:30:43,528 INFO conf.MetastoreConf: Unable to find config file metastore-site.xml 2025-06-17 19:30:43,528 INFO conf.MetastoreConf: Found configuration file null 2025-06-17 19:30:44,060 INFO DataNucleus.Persistence: Property datanucleus.cache.level2 unknown - will be ignored 2025-06-17 19:30:44,701 INFO hikari.HikariDataSource: HikariPool-1 - Starting... 2025-06-17 19:30:45,564 INFO hikari.HikariDataSource: HikariPool-1 - Start completed. 2025-06-17 19:30:45,707 INFO hikari.HikariDataSource: HikariPool-2 - Starting... 2025-06-17 19:30:45,741 INFO hikari.HikariDataSource: HikariPool-2 - Start completed. 2025-06-17 19:30:46,209 INFO metastore.ObjectStore: Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order" 2025-06-17 19:30:46,656 INFO metastore.MetaStoreDirectSql: Using direct SQL, underlying DB is MYSQL 2025-06-17 19:30:46,662 INFO metastore.ObjectStore: Initialized ObjectStore 2025-06-17 19:30:47,806 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:47,807 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:47,808 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:47,809 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:47,809 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:47,810 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:51,421 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:51,422 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:51,422 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:51,422 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:51,423 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:51,423 WARN DataNucleus.MetaData: Metadata has jdbc-type of null yet this is not valid. Ignored 2025-06-17 19:30:56,388 WARN metastore.ObjectStore: Version information not found in metastore. metastore.schema.verification is not enabled so recording the schema version 3.1.0 2025-06-17 19:30:56,388 WARN metastore.ObjectStore: setMetaStoreSchemaVersion called but recording version is disabled: version = 3.1.0, comment = Set by MetaStore [email protected] 2025-06-17 19:30:57,110 INFO metastore.HiveMetaStore: Added admin role in metastore 2025-06-17 19:30:57,116 INFO metastore.HiveMetaStore: Added public role in metastore 2025-06-17 19:30:57,279 INFO metastore.HiveMetaStore: No user is added in admin role, since config is empty 2025-06-17 19:30:57,779 INFO metastore.RetryingMetaStoreClient: RetryingMetaStoreClient proxy=class org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient ugi=root (auth:SIMPLE) retries=1 delay=1 lifetime=0 2025-06-17 19:30:57,891 INFO metastore.HiveMetaStore: 0: get_all_functions 2025-06-17 19:30:57,923 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_all_functions Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. 2025-06-17 19:30:58,126 INFO CliDriver: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases. Hive Session ID = 06c85488-8547-4e38-a0d1-5e386cd373f1 2025-06-17 19:30:58,131 INFO SessionState: Hive Session ID = 06c85488-8547-4e38-a0d1-5e386cd373f1 2025-06-17 19:30:58,173 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/06c85488-8547-4e38-a0d1-5e386cd373f1 2025-06-17 19:30:58,195 INFO session.SessionState: Created local directory: /tmp/root/06c85488-8547-4e38-a0d1-5e386cd373f1 2025-06-17 19:30:58,203 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/06c85488-8547-4e38-a0d1-5e386cd373f1/_tmp_space.db 2025-06-17 19:30:58,210 INFO metastore.HiveMetaStore: 1: get_databases: @hive# 2025-06-17 19:30:58,211 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_databases: @hive# 2025-06-17 19:30:58,213 INFO metastore.HiveMetaStore: 1: Opening raw store with implementation class:org.apache.hadoop.hive.metastore.ObjectStore 2025-06-17 19:30:58,217 INFO metastore.ObjectStore: ObjectStore, initialize called 2025-06-17 19:30:58,253 INFO metastore.MetaStoreDirectSql: Using direct SQL, underlying DB is MYSQL 2025-06-17 19:30:58,255 INFO metastore.ObjectStore: Initialized ObjectStore 2025-06-17 19:30:58,272 INFO metastore.HiveMetaStore: 1: get_tables_by_type: db=@hive#db_hive1 pat=.*,type=MATERIALIZED_VIEW 2025-06-17 19:30:58,272 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_tables_by_type: db=@hive#db_hive1 pat=.*,type=MATERIALIZED_VIEW 2025-06-17 19:30:58,305 INFO metastore.HiveMetaStore: 1: get_multi_table : db=db_hive1 tbls= 2025-06-17 19:30:58,305 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_multi_table : db=db_hive1 tbls= 2025-06-17 19:30:58,310 INFO metastore.HiveMetaStore: 1: get_tables_by_type: db=@hive#default pat=.*,type=MATERIALIZED_VIEW 2025-06-17 19:30:58,310 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_tables_by_type: db=@hive#default pat=.*,type=MATERIALIZED_VIEW 2025-06-17 19:30:58,327 INFO metastore.HiveMetaStore: 1: get_multi_table : db=default tbls= 2025-06-17 19:30:58,327 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_multi_table : db=default tbls= 2025-06-17 19:30:58,327 INFO metastore.HiveMetaStore: 1: get_tables_by_type: db=@hive#itcast_ods pat=.*,type=MATERIALIZED_VIEW 2025-06-17 19:30:58,327 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_tables_by_type: db=@hive#itcast_ods pat=.*,type=MATERIALIZED_VIEW 2025-06-17 19:30:58,332 INFO metastore.HiveMetaStore: 1: get_multi_table : db=itcast_ods tbls= 2025-06-17 19:30:58,332 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_multi_table : db=itcast_ods tbls= 2025-06-17 19:30:58,332 INFO metadata.HiveMaterializedViewsRegistry: Materialized views registry has been initialized hive> SHOW DATABASES; 2025-06-17 19:31:11,344 INFO conf.HiveConf: Using the default value passed in for log id: b6ee71f0-5d43-4149-99c7-808d6c553bb8 2025-06-17 19:31:11,624 INFO ql.Driver: Compiling command(queryId=root_20250617193111_702231fb-8543-45f5-b003-86a49e9c4298): SHOW DATABASES 2025-06-17 19:31:12,626 INFO ql.Driver: Concurrency mode is disabled, not creating a lock manager 2025-06-17 19:31:12,673 INFO ql.Driver: Semantic Analysis Completed (retrial = false) 2025-06-17 19:31:12,819 INFO ql.Driver: Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:database_name, type:string, comment:from deserializer)], properties:null) 2025-06-17 19:31:12,982 INFO exec.ListSinkOperator: Initializing operator LIST_SINK[0] 2025-06-17 19:31:13,009 INFO ql.Driver: Completed compiling command(queryId=root_20250617193111_702231fb-8543-45f5-b003-86a49e9c4298); Time taken: 1.484 seconds 2025-06-17 19:31:13,011 INFO reexec.ReExecDriver: Execution #1 of query 2025-06-17 19:31:13,011 INFO ql.Driver: Concurrency mode is disabled, not creating a lock manager 2025-06-17 19:31:13,012 INFO ql.Driver: Executing command(queryId=root_20250617193111_702231fb-8543-45f5-b003-86a49e9c4298): SHOW DATABASES 2025-06-17 19:31:13,034 INFO ql.Driver: Starting task [Stage-0:DDL] in serial mode 2025-06-17 19:31:13,041 INFO metastore.HiveMetaStore: 0: get_databases: @hive# 2025-06-17 19:31:13,041 INFO HiveMetaStore.audit: ugi=root ip=unknown-ip-addr cmd=get_databases: @hive# 2025-06-17 19:31:13,057 INFO exec.DDLTask: results : 3 2025-06-17 19:31:13,244 INFO ql.Driver: Completed executing command(queryId=root_20250617193111_702231fb-8543-45f5-b003-86a49e9c4298); Time taken: 0.233 seconds OK 2025-06-17 19:31:13,245 INFO ql.Driver: OK 2025-06-17 19:31:13,245 INFO ql.Driver: Concurrency mode is disabled, not creating a lock manager 2025-06-17 19:31:13,276 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir 2025-06-17 19:31:13,381 INFO mapred.FileInputFormat: Total input files to process : 1 2025-06-17 19:31:13,458 INFO exec.ListSinkOperator: RECORDS_OUT_INTERMEDIATE:0, RECORDS_OUT_OPERATOR_LIST_SINK_0:3, db_hive1 default itcast_ods Time taken: 1.725 seconds, Fetched: 3 row(s) 2025-06-17 19:31:13,479 INFO CliDriver: Time taken: 1.725 seconds, Fetched: 3 row(s) 2025-06-17 19:31:13,480 INFO conf.HiveConf: Using the default value passed in for log id: b6ee71f0-5d43-4149-99c7-808d6c553bb8 2025-06-17 19:31:13,480 INFO session.SessionState: Resetting thread name to main hive>
06-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值