神经网络量化(2) 量化方法

文章介绍了三种量化方法:对称量化通过对称结构保持数值平衡,非对称量化允许数据在非零区域转换,而移位量化适合不支持浮点运算的设备。对于Tensor的量化,可以全局使用一个scale和offset,但可能导致数据失真,或者分通道使用多个scale和offset以提高精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三种量化思路:

1. 对称量化:

float value=1.0;
float scale=0.1;
int qt32=round(value/scale);
chat qt8=clip(qt32,qt_min,qt_max);

//因为最后结果关于0呈现对称结构,所以称为对称量化

2. 非对称量化:

float value=1.0;
float scale=0.1;
int qt32=round(value/scale+offset);
chat qt8=clip(qt32,qt_min,qt_max);
//因为offset的存在,我们可以将value转换到非零区域,所以qt_min为0,即不对称

3. 移位量化:

float value=1.0;
float scale=0.1;
int qt32=round(value<<offset);
chat qt8=clip(qt32,0,qt_max);
//因为有些设备不能进行浮点运算,所以,我们通过一维将value转为整数。这叫移位量化

对于Tensor的两种量化思路:

1. Tensor整体使用一个scale和offset:会出现有些数据严重失真

2. Tensor分通道使用多个scale和offset:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值