AWS EC2 GPU 实例简介及费用对比

AWS EC2 GPU 实例简介及费用对比

个人博客:https://liuqianglong.com

本文介绍了AWS EC2 GPU实例的性能与费用对比,帮助大家选择适合自己需求的实例类型。文中对比了全球区和中国区的实例价格,并推荐了几种性价比较高的实例类型。还简要介绍了各类GPU实例的特点和性能差异,为需要在AWS上运行大模型的场景提供一些参考。

一、实例性能与费用对比

想要在本地运行大模型(LLM),一定少不了GPU,这里介绍一下目前在AWS上全球区和中国区所有带英伟达的 GPU EC2实例 [1]。

我整理了一张表格,用与对比各个实例的性能参数与价格。对于性能主要考虑显卡的型号、显卡数量、总GPU内存大小。

对于实例价格,AWS 全球区域选取了俄亥俄州区域(us-east-2)作为参考 [2],表格展示了每小时的按需费用,以及按照汇率7.2折算成人民币的价格。中国区选取了宁夏区域(cn-northwest-1)作为参考 [3],有些实例类型宁夏区域未上线,费用使用/表示。

从GPU大小和费用来看,下面几个实例类型是比较推荐的:

  • g4dn.xlarge:配备1个NVIDIA T4显卡,共16GB GPU。是带有NVIDIA显卡最便宜的实例,适合运行小模型,如使用ollama init4量化的Qwen2-7B、Baichuan-13B。宁夏区域按需实例费用为 3.711元/小时
  • g4dn.12xlarge:配备4个NVIDIA T4显卡,共64GB GPU。适合需要更大GPU的模型,g4dn中间档的实例类型只是增加了CPU和内存,并没有增加GPU,g4dn类型如果需要更大的GPU向上只能选择12xlarge。宁夏区域按需实例 27.596元/小时
  • g5.xlarge:配备1个NVIDIA A10G显卡,共24GB GPU。这是我最常用的实例类型,适合需要大于16GB但小于24GB GPU的场景,例如Ollama运行Qwen1.5-32B init4版本,这个版本会消耗19GB GPU。宁夏区域按需实例费用为 6.701元/小时
  • g5.12xlarge:配备4个NVIDIA A10G显卡,共96GB GPU。适合运行更大模型,例如Qwen2-72B init4版本需要约43GB GPU。宁夏区域按需实例费用为 40.206元/小时
  • g6.xlarge:配备1个NVIDIA L4显卡,共24GB GPU。宁夏区域没有此实例类型,全球区目前上线的也较少,如果能启动此实例,相对g4dn.xlarge性价比更高。us-east-2按需实例费用折算成人民币为 5.796元/小时

二、GPU实例类型特点简介

实例一般选新不选旧:最新实例通常配备更先进的硬件和技术,提供更高性能和更低成本。例如,P5实例相较于上一代P4实例在性能和成本上有明显优势。

  • P5实例:使用NVIDIA H100 Tensor Core GPU,适用于深度学习和高性能计算(HPC)应用,具有Nitro架构,提供最高性能和40%的成本节约。
  • P4实例:使用NVIDIA A100 GPU,适合大模型训练和HPC,支持400 Gbps网络。
  • P3实例:使用NVIDIA V100 GPU,适用于机器学习和HPC,提供高达100 Gbps网络带宽,加快训练时间。
  • P2实例:使用NVIDIA K80 GPU,提供强大并行计算性能,适用于机器学习和科学计算应用。
  • G6实例:使用NVIDIA L4 GPU,适用于深度学习推理和图形密集型工作负载,比前代提升2倍性能。
  • G5g实例:使用AWS Graviton2处理器和NVIDIA T4G GPU,适合Android游戏流和经济高效的机器学习推理,提供最佳性价比。
  • G5实例:使用NVIDIA A10G GPU,提供图形密集型应用和机器学习推理的高性能,比前代提升3倍。
  • G4实例:使用NVIDIA T4或AMD Radeon Pro V520 GPU,提供成本效益高的GPU性能,适用于机器学习推理和图形密集型应用,具有Nitro架构。

三、英伟达显卡型号对比

NVIDIA L4:最新发布,基于Ada Lovelace架构,具有高AI和图形处理性能,适用于视频处理、AI计算和图形工作负载。其24GB GDDR6显存和较低功耗在性能和能效方面表现出色 [4]。

NVIDIA A10G:基于Ampere架构,专为机器学习推理和图形密集型应用设计。拥有24GB显存和高计算能力,适合需要高性能计算和快速数据传输的任务,但其功耗较高 [5]。

NVIDIA T4:基于Turing架构,主要用于AI推理和多样化的云工作负载。尽管发布较早,但其良好的能效比和优化设计使其在许多场景下仍具竞争力 [6]。

四、文档链接

  • [1] Amazon EC2实例类型:https://aws.amazon.com/cn/ec2/instance-types/
  • [2] Amazon 俄亥俄州EC2按需实例价格:https://aws.amazon.com/cn/ec2/pricing/on-demand/
  • [3] Amazon 宁夏区域EC2按需实例价格:https://www.amazonaws.cn/ec2/pricing/ec2-linux-pricing/
  • [4] NVIDIA A10G 显卡:https://www.nvidia.com/en-us/data-center/products/a10-gpu/
  • [5] NVIDIA A10G 显卡:https://www.nvidia.com/en-us/data-center/l4/
  • [6] NVIDIA A10G 显卡:https://www.nvidia.com/en-us/data-center/tesla-t4/
### AWS EC2 GPU 配置和使用指南 #### 选择合适的EC2实例类型 AWS提供了多种配备不同型号GPUEC2实例,这些实例经过全面鉴定和测试,在网络、存储访问方面进行了优化,并集成了最新的NVIDIA和Intel驱动程序及库[^1]。开发者可以根据具体需求挑选适合的GPU实例。 #### 创建并启动带有GPU支持的AMI 当创建新的Amazon机器镜像(AMI)时,应确保选择了支持GPU加速的应用环境。官方推荐采用预装有深度学习框架和其他必要组件的AWS Deep Learning AMIs(AWS DLAMIs),因为这类镜像是预先配置好的,能够提供最优性能表现。 #### 设置必要的软件栈 安装所需的CUDA版本以及其他依赖项来适配所选硬件平台。通常情况下,这一步骤已经在DLAMI中完成;如果自行定制,则需参照官方文档操作以保持兼容性。 #### 实现数据持久化解决方案 考虑到某些类型的EC2实例(比如那些基于本地实例存储构建根设备的情况),建议利用S3对象存储服务保存重要资料副本,以便于长期存档或跨区域迁移用途[^2]。 #### 整合其他云服务平台 为了增强应用功能和服务质量,还可以考虑引入更多AWS产品线内的工具链,例如但不限于: - **CloudFront**: 提升跨国界传输效率; - **Lambda**: 执行无服务器架构下的业务流程控制; - **Amplify**: 支持Web/移动端UI搭建工作流[^3]。 #### 监控与调优 最后阶段要重视运维层面的工作——定期审查系统日志文件并通过可视化仪表板跟踪各项指标变化趋势,及时发现潜在风险点加以调整改进措施,从而维持稳定高效的生产状态[^4]。 ```bash # 示例命令:查看当前正在使用的GPU信息 nvidia-smi ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值