Largest Submatrix

本文介绍了一种解决最大相同子矩阵问题的算法实现,通过分析字符矩阵中字符替换的可能性,提出了针对'a'、'b'、'c'三种字符状态的最大子矩阵求解方法,并附上了具体的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://acm.hdu.edu.cn/showproblem.php?pid=2870

题目意思是给一个字符矩阵“w”可以替换成“a”或者“b”,“w”可以替换成“a”或者“b”,“x”可以替换成“b”或者“c”,“z”可以替换成“a”或者“b”或者“c”。问可以找出一个字符一样的最大的子矩阵是多大。

思路是列出三种情况,就是全部替换成a的时候取得的子矩阵是全有a组成的,同理b,c。现在的问题就是求最大子矩阵的问题了。三个数组(A,B,C)分别表示三种状态,我用0表示不是我求的最大矩阵字符的字符,1反之。现在这一问题是否为也就是http://acm.hdu.edu.cn/showproblem.php?pid=1506这个问题了,每一行这么求一次就好了。其实问题的关键就转换成求一个数字左右两边大于等于这个数字的个数,分别用两个数组来存(Alnumber,Arnumber,Blnumber,Brnumber,Clnumber,Crnumber,)。

附上很丑的代码,跑了656ms

#include <iostream>
#include <stdlib.h>
#include <cstdio>
#include <memory.h>
#define maxn 1005
using namespace std;
char map;
int A[maxn][maxn],B[maxn][maxn],C[maxn][maxn];
int Alnumber[maxn],Arnumber[maxn],Blnumber[maxn],Brnumber[maxn],Clnumber[maxn],Crnumber[maxn];
int main()
{
    //freopen("in.txt","r",stdin);
    int col,row,i,j;
    while(scanf("%d%d",&col,&row)!=EOF&&col&&row)
    {
        getchar();
        memset(A,0,sizeof A);
        memset(B,0,sizeof B);
        memset(C,0,sizeof C);
        for(i = 1 ;i<=col ; i++)
        {
            for(j= 1;j<=row;j++)
            {
                scanf("%c",&map);
                if(map=='a'||map=='w'||map=='y'||map=='z')
		A[i][j] =A[i-1][j] +1;
		else A[i] [j] =0;
                if(map=='b'||map=='w'||map=='x'||map=='z')
		B[i][j] =B[i-1][j] +1;
		else B[i] [j] =0;
                if(map=='c'||map=='x'||map=='y'||map=='z')
		C[i][j] =C[i-1][j] +1;
		else C[i] [j] =0;
            }
            getchar();
        }
        int ans=0;
        for(i = 1;i<=col ;i++)
        {
            memset(Alnumber,0,sizeof Alnumber);
            memset(Blnumber,0,sizeof Blnumber);
            memset(Clnumber,0,sizeof Clnumber);
            memset(Arnumber,0,sizeof Arnumber);
            memset(Brnumber,0,sizeof Brnumber);
            memset(Crnumber,0,sizeof Crnumber);
            Alnumber[1]=1,Arnumber[row]=row;
            Blnumber[1]=1,Brnumber[row]=row;
            Clnumber[1]=1,Crnumber[row]=row;
            for(j = 2 ; j <= row ; j++)
            {
                int tt=j,kk=j,cc=j;
                while(tt>1&&A[i][j]<=A[i][tt-1])tt=Alnumber[tt-1];
		Alnumber[j]=tt;
                while(kk>1&&B[i][j]<=B[i][kk-1])kk=Blnumber[kk-1];
		Blnumber[j]=kk;
                while(cc>1&&C[i][j]<=C[i][cc-1])cc=Clnumber[cc-1];
		Clnumber[j]=cc;
            }
            for(j = row-1 ; j >= 1 ; j--)
            {
                int tt=j,kk=j,cc=j;
                while(tt<row&&A[i][j]<=A[i][tt+1])tt=Arnumber[tt+1];
		Arnumber[j]=tt;
                while(kk<row&&B[i][j]<=B[i][kk+1])kk=Brnumber[kk+1];
		Brnumber[j]=kk;
                while(cc<row&&C[i][j]<=C[i][cc+1])cc=Crnumber[cc+1];
		Crnumber[j]=cc;
            }
            for(j = 1 ; j <= row ; j++)
            {
                ans=max(ans,A[i][j]*(1-Alnumber[j]+Arnumber[j]));
                ans=max(ans,B[i][j]*(1-Blnumber[j]+Brnumber[j]));
                ans=max(ans,C[i][j]*(1-Clnumber[j]+Crnumber[j]));
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值