前言
不管是幅度调制还是角度调制,都离不开正弦信号,其中相干解调都要求恢复发送端使用的正弦载波信号,这一节就来深入探究一下载波同步的相关知识。
一、正弦信号
在通信原理中,正弦信号一般写作 cos 2 π f c t \cos2\pi f_ct cos2πfct。(正弦余弦只是相位不同,没有本质区别)这个信号是由振荡器产生的,由于振荡器的不稳定性,实际生成信号的相位会有微小的偏移 θ ( t ) \theta(t) θ(t),由于这个变化一般比较慢,就近似成一个常数相位偏移,从而有:
cos ( 2 π f c t + θ ) \cos(2\pi f_ct+\theta) cos(2πfct+θ)
这里的相偏 θ \theta θ是个随机变量,不同的震荡器在不同的时间可能会有不同的相偏。
二、载波同步
之前在介绍相干解调时提过,如果接收端不使用发送端相同的载波,即使解调用载波与调制用的载波频率相同,其随机相偏也不相同,最终解调出来的信号是 m ( t ) cos ( θ − ϕ ) m(t)\cos(\theta-\phi) m(t)cos(θ−ϕ),导致无法恢复出原信号。
因此,相干解调必须使用频率相偏都与发送端一致的载波,所以需要进行载波同步,也叫载波恢复。对于发送端直接插入了载波一同发射的调制,只需要在接收端直接用窄带滤波器滤出使用即可。下面我们重点介绍一下发送端没有发送载波信号时的载波同步方法。
2.1、平方环法
对于没有发送载波的已调信号,则需要其他的方法恢复载波,其中一种方法是平方环法,其框图如下:
当我们说已调信号中不包含载波,是指 s ( t ) = m ( t ) cos ( 2 π f c t + θ ) s(t)=m(t)\cos(2\pi f_ct+\theta) s(t)=m(t)cos(2πfct+θ)中不包含载波频率处的冲激,也即 m ( t ) m(t) m(t)的均值为0。平方环法则首先将输入信号求平方,从而得到:
s 2 ( t ) = m 2 ( t ) cos 2 ( 2 π f c t + θ ) s^2(t)=m^2(t)\cos^2(2\pi f_ct +\theta) s