【剑指offer】_19 滑动窗口中的最大值

本文介绍了一种高效算法,用于解决给定数组和滑动窗口大小时寻找所有滑动窗口内的最大值问题。通过使用双端队列,避免了蛮力法的高时间复杂度,实现了更快速的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。

解题思路

  1. 方案一:蛮力法,顺序分块扫描。例如在上例中,我们进行不断的分组和查找,3个一组,这样最终会找出其最大值。但是其时间复杂度为O(NK)。N为滑动窗口的数量,K为滑动窗口的大小。
  2. 方案二:双端队列实现。由于方案二中实现的步骤比较复杂,所以我们换了一种思路,在取得最大值的过程中,我们并不把每个数值都存入队列,而只是把有可能成为最大值的数据存入到两端开口的队列(deque)中,上面的输入为例,其求解过程如下:

在这里插入图片描述

代码实现

class Solution {
    vector<int> res;
    deque<int> q;
public:
    vector<int> maxInWindows(const vector<int>& num, unsigned int size)
    {
        if(num.size()>=size && size >= 1)  //保证参数合理性
        {
            //取一个窗口中的最大值的下标
            for(int i=0;i<size;++i)
            {
                if(!q.empty() && num[q.back()]<=num[i])
                    q.pop_back();
                q.push_back(i);
            }
            
            //处理后面
            for(int i = size;i<num.size();++i)
            {
                //每回将一个窗口中的最大值压入结果集合
                //最大值永远是以队列头元素为下标的值
                res.push_back(num[q.front()]);
                
                //如果后面元素大小有比以队列中任何一个元素为下标的元素大的话
                //把队列清空
                while(!q.empty() && num[q.back()] <= num[i])
                    q.pop_back();
                
                //如果后面的元素没有比当前最大元素大,但是窗口已经满了,滑过了最大元素的下标
                if(!q.empty() && q.front() <= i-size)
                    q.pop_front();
                q.push_back(i);
            }
            //最后一次循环结束,i到头,最后一个窗口中的最大值就是
            //以队列中头元素为下标的值
            res.push_back(num[q.front()]);
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值