算法导论第九章习题9.3-7

博客探讨了如何在O(n)时间复杂度内找到数组中位数相邻的k个数字。初始方法耗时O(kn),通过改进策略,先找到中位数并分割数组,对前后两部分分别寻找特定位置的数字,从而实现时间复杂度优化至O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在O(n)时间范围内找出数组a[n]中位数相邻的k个数字

思路:简单的思路是先找出中位数(n+1)/2然后依次找第(n+1)/2-1小数字、(n+1)/2-2小数字、(n+1)/2-3.小数字。。。。(n+1)/2-k/2小数字,再找第(n+1)/2+1小数字、(n+1)/2+2小数字、(n+1)/2+3.小数字。。。。(n+1)/2+(k+1)/2小数字。但是该算法时间复杂度为O(kn)。

改进思路为:先找中位数,将数组按照中位数进行分割,数组的前半部分找第(n-1)/2-k/2小的数字,按照该数字对前半部分进行分割,则该数字到中位数之前的数字有k/2个数字,这些数字为与中位数相邻且小于中位数的前k/2个数字。数组的后半部分找出第(k+1)/2小的数字,然后按照该元素对后半部分进行分割,则中位数后一元素到该元素的(k+1)/2个元素为与中位数相邻且大于中位数的数字。该算法共调用三次分割选择函数Select,而该函数的时间复杂度为O(n),所以时间复杂度为O(n)。其具体代码如下:

//例题9.2中的算法的期望时间复杂度为O(n),而在9.3的例题中的最坏运行时间复杂度为O(n)。
//该算法实现思路是将数组每五个元素分为一组,最后一组可能不足五个。
//选出每一组中的中位数,然后选出这些中位数的中位数。根据这个中位数对数组进行划分为两组。
//然后再按照9.。2中的方法递归调用划分寻找第i小的数。
//该算法的对比于9.2的改进之处在于对partition方法进行了优化,而不是随进选择数组进行划分。
#include<iostream>
using namespace std;
//插入排序不解释
void Insert_sort(int a[],int p,int r)  
{  
    int i,j,key,length;
	length=r-p+1;
    for(i=p+1;i<=r;i++)  
    {  
        key=a[i];  
        j=i-1;  
        while(key<a[j])  
        {  
            int temp;  
    
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值