
大模型
文章平均质量分 55
易之阴阳
易之阴阳,量子纠缠,道之一体,缘起性空。问学ICT及AI与人的智慧。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大模型一体机功能要求和测试方法
大模型一体机作为专为运行和应用人工智能大模型而设计的集成计算设备,其功能要求与测试方法应涵盖硬件性能、软件集成、模型运行与管理、数据处理、安全性等多个方面。原创 2024-04-15 08:00:00 · 2427 阅读 · 0 评论 -
大模型一体机
大模型一体机是一种专为人工智能(AI)大模型的应用与部署设计的集成计算设备,它将高性能硬件、定制化的软件环境、预训练的大模型及相关工具链紧密整合在一起,以实现对大模型的高效训练、推理及管理。这类一体机通常服务于企业或机构在私有环境中快速、便捷地利用大模型进行业务创新或科研活动,同时兼顾数据安全、隐私保护和定制化需求。综上所述,大模型一体机作为一种端到端的解决方案,旨在帮助企业快速构建基于大模型的AI能力,降低技术门槛,提升研发效率,同时确保数据安全与合规性,适应不同行业对AI技术的个性化需求。原创 2024-04-15 07:45:00 · 1661 阅读 · 0 评论 -
最新的人工智能技术有哪些突破?
这些趋势和突破展示了人工智能技术的快速发展,同时也提出了在伦理、安全和管理方面的新挑战。下图展示了最新人工智能技术的未来场景,包括通用人工智能在虚拟环境中的互动、合成数据的生成、多模态人工智能处理不同类型的数据、个性化人工智能助手帮助用户,以及人工智能安全和信任的重点。这可能标志着从特定任务人工智能向通用人工智能的转变,即能够自我学习和适应更复杂任务的人工智能。:继大型语言模型之后,多模态人工智能成为新的趋势。这种AI能够处理和交互多种类型的数据,如文本、图像和声音,从而提供更自然和直观的用户体验。原创 2024-04-05 07:57:09 · 1095 阅读 · 0 评论 -
大模型的模型参数定义方法
大模型的模型参数定义方法指的是在训练和构建大规模深度学习模型的过程中,如何定义和组织模型中所需的变量或权重。总之,模型参数是在模型定义时按照模型结构的需求被自动创建和管理的,开发者主要负责搭建模型结构,并指定合适的初始化策略和优化方法,而具体的参数数值则在训练过程中由算法动态调整。: 在卷积神经网络(CNN)中,每个卷积层都有多个卷积核,它们也是模型参数的一部分,用于提取图像或序列数据中的特征。: 在处理文本数据时,词嵌入层的嵌入矩阵是一个重要的参数,每一列代表一个词汇的稠密向量表示。原创 2024-03-25 15:26:17 · 1399 阅读 · 0 评论 -
大模型的模型参数为什么这么多
随着参数数量的增加,模型能够学习到更为细致和深层次的特征表示,这对于处理复杂的自然语言、图像识别、音频处理、甚至是跨领域的多模态数据尤为重要。总之,大模型参数的增多是为了增强模型对复杂数据的表征能力和泛化能力,尤其是在现代深度学习和大规模数据环境下,这是提高模型性能和解决复杂任务的关键途径之一。: 尽管增加参数可能会带来过拟合的风险,但如果配合恰当的正则化技术(如权重衰减、Dropout、早停等)和足够大的训练数据集,大模型可以展现出更强的泛化能力,即在未见过的数据上表现良好。原创 2024-03-25 14:44:51 · 1856 阅读 · 0 评论 -
大模型技术实践路线图
总结来说,大模型技术实践路线图是一种长期战略规划,它涵盖了从基础设施建设到具体应用落地的全过程,旨在引导相关企业和研究团队有序、高效地推进大模型技术的研发和产业化进程。大模型技术实践路线图是指指导研发团队构建、训练和应用大规模AI模型的具体步骤和规划。原创 2024-03-24 20:08:22 · 1192 阅读 · 0 评论 -
生成式模型应用的示例
总之,生成式模型已经渗透到各行各业,不断拓展着人工智能技术的应用边界,通过学习数据分布规律创造出新的数据样本,服务于科研、教育、艺术、工业制造等多个领域。原创 2024-03-24 20:00:20 · 511 阅读 · 0 评论 -
大模型的关键技术
以上列举的是大模型技术研发的一些关键方面,随着技术的不断进步,新的关键技术也会持续涌现和发展。原创 2024-03-24 19:49:20 · 2058 阅读 · 0 评论 -
猜测Grok大语言模型技术架构
语言大模型技术主要包括模型预训练、适配微调、提示学习、知 识增强和工具学习等,由于Grok大语言模型是基于虚构情境中的xAI公司所开发的,具体的技术架构细节未在现有信息中明确给出。原创 2024-03-22 17:49:40 · 2072 阅读 · 0 评论 -
目前开源的大模型及github地址
BERT 的代码已经在 Github 上开源。XLNet: XLNet 是一种新的预训练语言模型,它通过使用全局的依赖关系来解决了 BERT 在长距离依赖关系上的问题。RoBERTa: RoBERTa 是在 BERT 的基础上进行改进的模型,它通过增加训练数据和改变训练策略来提高了性能。DeBERTa: DeBERTa 是一种基于 BERT 的模型,它通过使用解码器来改进了 BERT 的性能。T5: T5 是一种基于转换器的预训练语言模型,它在许多 NLP 任务上表现出了非常强大的性能。原创 2024-03-22 17:03:03 · 1267 阅读 · 0 评论 -
AI永远无法达到人可有的智慧
IT界开发工作没有银弹。开发有三大方面是常态:变化的人,需求的变动,技术复杂度。开发工作中这些事情无不需要人来评估和裁决及修正。因此才有敏捷开发模式的诞生。AI是帮助人的,在开发过程中是可以高效率帮助有思想、有架构、有设计理念、有客户价值观的人员的,她能做个好的agent,很好的秘书。首先绝大部分人都不懂的一点是:人工智能永远没有人的智慧,因为人求智慧的方法与人工智能的方式是完全相反的。另外AI不是万能的,更没有智慧,凡人所主动主导的实操,一时都需要人的参与。原创 2024-03-21 19:48:45 · 263 阅读 · 0 评论 -
如何利用开源的大模型框架进行实际项目开发
模型训练:使用框架提供的模型进行训练。根据实际项目的需求,可以选择预训练模型并进行微调,或者从头开始训练模型。选择合适的开源大模型框架:根据实际项目的需求,选择一个适合的开源大模型框架。例如,如果使用Transformers框架,可以通过pip安装,并根据项目需求配置模型和tokenizer。准备数据集:根据实际项目的需求,准备相应的数据集,并将其转换为框架所支持的格式。同时,可以参考开源大模型框架的文档和社区资源,获取更多的帮助和支持。例如,可以使用部署的模型对用户输入的文本进行分类,并返回相应的结果。原创 2024-03-22 08:30:00 · 784 阅读 · 0 评论