剑指offer:平衡二叉树

本文介绍了一种算法,用于判断二叉树是否为平衡二叉树。通过递归求解左右子树的深度,若深度差不超过1,则判定为平衡。提供了两种实现方式:一种是从上至下直接判断,另一种是采用后序遍历自下而上检查,后者更节省计算资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

输入一棵二叉树,判断该二叉树是否是平衡二叉树。

解题思路

在二叉树的深度上求,分别求其左右子树的深度,如果深度差值小于1则为平衡二叉树。
从上而下

class Solution {
public:
    int TreeDepth(TreeNode* pRoot)
    {
        if(pRoot==NULL) return 0;
        int leftn = TreeDepth(pRoot->left);
        int rightn =  TreeDepth(pRoot->right);
        return (leftn>rightn)? (leftn+1):(rightn+1);    
    }
    bool IsBalanced_Solution(TreeNode* pRoot) {
        if(pRoot == NULL) return true;
        int leftn = TreeDepth(pRoot->left);
        int rightn =  TreeDepth(pRoot->right);
        if(abs(leftn-rightn)<=1) return true;
        else return false;
    }
};

后序遍历,自下而上节省开销。

class Solution {
public:
    int TreeDepth(TreeNode* pRoot)
    {
        if(pRoot==NULL) return 0;
        int leftn = TreeDepth(pRoot->left);
        int rightn =  TreeDepth(pRoot->right);
        return (leftn>rightn)? (leftn+1):(rightn+1);    
    }
    int getDepth(TreeNode* pRoot) {
        if(pRoot==NULL) return 0;
        int leftn = TreeDepth(pRoot->left);
        if(leftn==-1) return -1;
        int rightn =  TreeDepth(pRoot->right);
        if(rightn==-1) return -1;
        if(abs(leftn-rightn)>1) return -1;
        else return (leftn>rightn)? (leftn+1):(rightn+1);    
    }

    bool IsBalanced_Solution(TreeNode* pRoot) {
        if(pRoot == NULL) return true;
        if(getDepth(pRoot)!=-1) return true;
        else return false;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值