DeepSeek最简单本地部署方案

### 最简单的本地部署方案

为了简单地本地部署DeepSeek,以下是一步步的操作指南:

#### 1. 安装编程语言

首先,选择Python或R作为编程语言。Python在数据分析中更为常见。

#### 2. 下载DeepSeek的代码库

根据以下链接下载对应的代码库:

- **Python**:[DeepSeek Python](https://github.com/ DeepSeek / deepseek-python)
- **R**:[DeepSeek R](https://github.com/ DeepSeek / deepseek-r)

#### 3. 解决本地安装路径问题

通常,代码库的安装路径可能在用户的当前目录或相关子目录下。因此,在运行代码时需要使用`sys.path.insert()`函数来调整路径。

#### 4. 开始编写Python代码

以以下示例为例,简要说明如何使用DeepSeek进行简单的数据处理:

```python
import sys
from deepseek import DeepSeek

# 设置安装的Python路径
sys.path.insert(0, '/path/to/your/deepseek-python-package')

def main():
    # 初始化深度求索工具
    ds = DeepSeek('127.0.0.1', port=9400)
    
    print("初始化成功,进入数据处理界面。")
    
    # 定义待处理的数据类型和参数
    data = {
        '关键词': ['搜索结果']
&nb

### 本地部署 DeepSeek 7B 模型于 Windows 系统 #### 硬件与软件需求 对于DeepSeek 7B模型的部署,硬件方面需满足至少8-12GB显存的GPU设备推荐使用NVIDIA显卡以获得最佳性能表现[^3]。此外,为了确保顺利安装和运行,还需预留足够的SSD硬盘空间——建议50GB以上。 在软件准备阶段,应先完成如下几项工作: - 安装适用于所持NVIDIA显卡最新版驱动程序; - 配置CUDA工具包至版本11.7或更新版本来匹配GPU计算需求; - 获取并设置Ollama平台用于管理和服务化大型语言模型实例; #### Docker 的安装与配置 鉴于Windows操作系统特性,在此之前还应当依据官方指导文档完成Docker Desktop客户端的正确安装备份方案以及初步参数调整,以便后续能够顺畅地拉取镜像资源和支持容器化应用执行环境构建[^1]。 ```powershell # PowerShell命令示例:启动Docker服务 Start-Service docker ``` #### 下载与加载 DeepSeek 7B 模型 访问指定仓库地址获取目标架构对应的预训练权重文件,并按照指引将其放置到适当位置等待进一步处理。通常情况下会涉及到解压操作及路径映射设定等工作流程。 ```bash # Bash命令示例外:假设已切换至Linux子系统下进行操作 wget https://example.com/path/to/deepseek-r1-7b.tar.gz tar -xvf deepseek-r1-7b.tar.gz ``` #### 启动 ChatBox 及 API 接口对接 当上述准备工作完成后,即可利用配套提供的ChatBox界面或其他形式的人机交流入口开展实际测试活动。此时只需简单几步就能让自定义API Key关联起刚搭建完毕的服务端点,进而开启一段充满趣味性的探索之旅[^4]。 ```json // JSON格式配置样例片段 { "model": "deepseek-r1-7b", "api_key": "<Your_API_Key_Here>" } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值