【KD】2022 TPAMI Quantifying the Knowledge in a DNN to Explain Knowledge Distillation for Clf

本文研究了知识蒸馏为何能提升深度学习模型性能,提出知识点(Knowledge Points, KPs)的概念,量化DNN学到的知识。通过实验验证,知识蒸馏使学生模型学到更多高质量的KPs,同时学习过程更稳定。知识点为理解深度学习模型提供了新视角,并有助于优化知识蒸馏过程。" 90105934,8536004,PCA降维:相似矩阵的几何视角,"['数据分析', '机器学习', '特征选择', '矩阵运算', '统计学']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、简介

2、知识蒸馏为什么有效?因为有老师给你划“重点”

Preface

Introduction

Hypothesis & Metrics

信息损失与知识点

假设与评估

Experiments

实验细节

实验结果

其它

3、参考


1、简介

本文是发表在 TPAMI 上的论文,来自张拳石老师的课题组。

作者 | 张成蹊

单位 | Freewheel机器学习工程师

研究方向 | 自然语言处理

2、知识蒸馏为什么有效?因为有老师给你划“重点”

Preface

论文标题:

Quantifying the Knowledge in a DNN t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值