【KD】2022 KDD FreeKD: Free-direction Knowledge Distillation for Graph Neural Networks

本文提出了一种新的知识蒸馏框架FreeKD,用于图神经网络(GNN),它解决了传统知识蒸馏中依赖深度优化教师GNN的问题。FreeKD通过分层强化学习让两个较浅的GNN相互学习,从而提高性能,适用于多种GNN模型。实验结果显示FreeKD在多个数据集上显著提升了GNN的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

 0.简介

1.摘要

2.模型介绍

2.1 节点级知识蒸馏

2.2 结构级知识蒸馏

2.3 优化过程

3.实验

3.1 数据集

3.2 基线模型

3.3 实验结果

3.3.1 结果分析

3.3.2 消融研究

4.总结

参考


 0.简介

今天给大家介绍北京理工大学计算机学院李长升教授团队发表在KDD2022上的文章,《FreeKD: Free-direction Knowledge Distillation for Graph Neural Networks》。知识蒸馏 (KD) 已证明其提高图神经网络 (GNN) 性能的有效性,其目标是将知识从较深的教师GNN 提炼成较浅的学生GNN,但由于过度参数化和过度平滑问题,很难训练出令人满意的教师GNN,导致实际应用中的无效知识迁移。本文提出了一个通过GNN强化学习的Freedirection Knowledge Distillation框架,称为FreeKD,它不再需要提供更深入的优化教师GNN,而是协作构建两个较浅的GNN,以通过分层强化学习的方式在它们之间交换知识。在五个基准数据集上进行的大量实验表明,FreeKD在很大程度上优于两个基本GNN,并显示了它对各种 GNN 的性能提升。

1.摘要

随着互联网的快速发展,图数据变得越来越普遍和无处不在,例如社交网络、引文网络等。为了更好地处理图结构数据,图神经网络(GNN)提供了一种学习节点的有效手段通过聚合邻域节点的特征信息进行嵌入。最近,一些研究人员将一种有趣的学习方案,称为知识蒸馏(K

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值