目录
0.简介
今天给大家介绍北京理工大学计算机学院李长升教授团队发表在KDD2022上的文章,《FreeKD: Free-direction Knowledge Distillation for Graph Neural Networks》。知识蒸馏 (KD) 已证明其提高图神经网络 (GNN) 性能的有效性,其目标是将知识从较深的教师GNN 提炼成较浅的学生GNN,但由于过度参数化和过度平滑问题,很难训练出令人满意的教师GNN,导致实际应用中的无效知识迁移。本文提出了一个通过GNN强化学习的Freedirection Knowledge Distillation框架,称为FreeKD,它不再需要提供更深入的优化教师GNN,而是协作构建两个较浅的GNN,以通过分层强化学习的方式在它们之间交换知识。在五个基准数据集上进行的大量实验表明,FreeKD在很大程度上优于两个基本GNN,并显示了它对各种 GNN 的性能提升。
1.摘要
随着互联网的快速发展,图数据变得越来越普遍和无处不在,例如社交网络、引文网络等。为了更好地处理图结构数据,图神经网络(GNN)提供了一种学习节点的有效手段通过聚合邻域节点的特征信息进行嵌入。最近,一些研究人员将一种有趣的学习方案,称为知识蒸馏(K