2024 Nature Medicine MINIM 生成式AI4医学影像人工智能模型

目录

Self-improving generative foundation model for synthetic medical image generation and clinical applications

摘要

正文

结果

MINIM 的框架概述

质量评估

临床医生的主观评估

客观图像质量评估

CAS 性能

零样本 IIR 性能

零样本 ITR 性能

自我改进策略

基于临床医生评分的 RL

迁移学习

使用合成图像的下游应用

诊断

报告生成

自监督学习

使用合成图像的临床应用

肺癌中的 EGFR 突变检测

HER2 突变检测

讨论

附录

方法

数据集描述和伦理审批

临床医生的图像分级

MINIM 的框架和实现细节

对比方法和消融研究

RL 实现细节

下游分析的实现

EGFR 突变类型检测的实现细节

HER2 状态检测的实现细节

报告总结

数据可用性

代码可用性

参考


Self-improving generative foundation model for synthetic medical image generation and clinical applications

摘要

在许多临床和研究环境中,高质量医学影像数据集的稀缺阻碍了人工智能(AI)临床应用的潜力。在较不常见的病症、代表性不足的人群和新兴成像模式中,这个问题尤为突出,因为多样化和全面的数据集往往不足。为了应对这一挑战,我们引入了一个名为 MINIM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值