# 使用Supabase和LangChain构建智能RAG系统
在构建现代应用程序时,我们常常需要集成多种工具来构建强大的数据查询和分析能力。本文将介绍如何使用[Supabase](https://supabase.com/)作为后端数据库,并结合[LangChain](https://www.langchain.com/)来实现一个基于RAG (Retrieval-Augmented Generation) 的智能系统。
## 引言
Supabase 是一个开源的 Firebase 替代方案,提供了丰富的数据库管理能力。通过将 Supabase 与 LangChain 集成,您可以轻松实现一个高效的 RAG 系统。本文将带您一步步完成这个过程,包括环境配置、数据库设置、以及代码示例。
## 主要内容
### 环境配置
首先,我们需要设置一些环境变量:
```shell
export OPENAI_API_KEY=<your-openai-api-key>
export SUPABASE_URL=<your-supabase-url>
export SUPABASE_SERVICE_KEY=<your-supabase-service-key>
# Optional for LangSmith configuration
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-langchain-api-key>
export LANGCHAIN_PROJECT=<your-langchain-project>
设置Supabase数据库
如果您还没有设置 Supabase 数据库,请按照以下步骤进行:
- 访问 https://database.new 创建您的 Supabase 数据库。
- 进入 SQL 编辑器,运行以下脚本以启用
pgvector
和设置数据库为向量存储:
-- 启用 pgvector 扩展以处理嵌入向量
create extension if not exists vector;
-- 创建一个表来存储文档
create table documents (
i