实验目的:
练习动态规划
实验内容:
1只袋鼠要从河这边跳到河对岸,河很宽,但是河中间打了很多桩子,每隔一米就有一每个桩子上有一个弹簧,袋鼠跳到弹簧上就可以跳的更远。每个弹簧力值不同,用一个数字代表它的力量,如果弹簧的力量为5,就表示袋鼠下一跳最多能够跳5米, 如果为0,就表示会陷进去无法继续跳跃。河流一共n米宽,袋鼠初始在第一个弹簧上面, 若跳到最后一个弹簧就算过河了,给定每个弹簧的力量,求袋鼠最少需要多少跳能够到达对岸.如果无法到达,输出-1.
输入描述:输入分两行,第1行是数组长度n(1≤n≤1OOOO),第2行是每一项的值.用空格分隔。。
输出描述:输出最少的跳数,若无法到达输出-1。
输入样例:
5
2 0 1 1 1
样例输出:
4
思路:
动态规划,数据存到nums[n]里,用dp[i]表示袋鼠跳到第i个桩子时的最小跳数。
初始化dp数组,dp[0]等于0,其余为INT_MAX(相当于无限大)。
如果能从第j的桩子跳到第i个桩子,那么dp[i]=dp[j] + 1.
如果遇到更小的dp值,就更新dp[i],
即dp[i] = min(dp[i] , dp[j] + 1)
当j小于i且能跳到i,即j + nums[j] >= I;
如果遍历完dp[n]仍为INT_MAX,则无法到达,否则其值即为答案。
代码
#include <iostream>
#include <algorithm>
#include <vector>