求解袋鼠过河问题

这篇博客探讨了一种动态规划的解决方案,用于帮助袋鼠从河的一边跳到对岸。问题中,河面上设有弹簧桩子,袋鼠每次跳跃的距离由弹簧的力量决定。博主通过初始化dp数组并迭代更新最小跳数来找到到达对岸所需的最少跳跃次数。如果无法到达对岸,输出-1。代码实现中,博主展示了如何遍历弹簧力量数组并更新dp状态以找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验目的:

练习动态规划

实验内容:

1只袋鼠要从河这边跳到河对岸,河很宽,但是河中间打了很多桩子,每隔一米就有一每个桩子上有一个弹簧,袋鼠跳到弹簧上就可以跳的更远。每个弹簧力值不同,用一个数字代表它的力量,如果弹簧的力量为5,就表示袋鼠下一跳最多能够跳5米, 如果为0,就表示会陷进去无法继续跳跃。河流一共n米宽,袋鼠初始在第一个弹簧上面, 若跳到最后一个弹簧就算过河了,给定每个弹簧的力量,求袋鼠最少需要多少跳能够到达对岸.如果无法到达,输出-1.
输入描述:输入分两行,第1行是数组长度n(1≤n≤1OOOO),第2行是每一项的值.用空格分隔。。
输出描述:输出最少的跳数,若无法到达输出-1。
输入样例:
5
2 0 1 1 1
样例输出:
4

思路:

动态规划,数据存到nums[n]里,用dp[i]表示袋鼠跳到第i个桩子时的最小跳数。
初始化dp数组,dp[0]等于0,其余为INT_MAX(相当于无限大)。
如果能从第j的桩子跳到第i个桩子,那么dp[i]=dp[j] + 1.
如果遇到更小的dp值,就更新dp[i],
即dp[i] = min(dp[i] , dp[j] + 1)
当j小于i且能跳到i,即j + nums[j] >= I;
如果遍历完dp[n]仍为INT_MAX,则无法到达,否则其值即为答案。

代码

#include <iostream>
#include <algorithm>
#include <vector>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值