在大语言模型(LLMs)蓬勃发展的当下,数据处理领域正经历着一场深刻变革。传统的提取 - 转换 - 加载(ETL)数据处理流程,逐渐向提取 - 情境化 - 加载(ECL)语义处理流程转变。这一转变不仅是技术层面的升级,更标志着数据处理理念的重大革新,为各行业的数字化转型带来了新的机遇与挑战。
一、ETL 的发展历程回顾
ETL 的发展历经多个阶段,每个阶段都反映了当时技术和业务需求的变化。20 世纪 70 - 80 年代,企业虽意识到跨系统利用数据的价值,但受技术限制,数据处理主要依赖人工从不同来源提取数据,再通过批处理脚本进行清洗。这种方式耗时费力、易出错且难以扩展,数据处理效率极为低下。
到了 90 年代,随着数据仓库解决方案的兴起,企业开始利用其存储历史数据并进行分析,这促使 ETL 工具不断发展。ETL 工具提供图形用户界面(GUI)来构建工作流,大大降低了操作复杂度,数据转换、错误处理和日志记录等功能也逐渐成为标准配置,数据处理流程变得更加自动化和可靠。
进入 21 世纪,ETL 工具迎来新的发展阶段,开始支持实时数据处理。同时,工具功能进一步拓展,涵盖元数据管理、数据质量提升和数据可靠性增强等方面,并且与数据管理和分析平台的集成更加紧密,有效简化了数据生命周期管理流程。
近年来,随着大数据和云计算技术的飞速发展,ETL 工具不断升级以处理海量数据,并能与分布式计算框架如 Spark 和 Hadoop 协同工作。云提供商和数据平台提供商推出了像 AWS Glue、Google Cloud Dataflow、Azure Data Factory 等全托管 ETL 平台,使得 ELT(提取 - 加载 - 转换)流程因云数据仓库解决方案的易用性和成本效益而愈发普及。
二、LLMs 时代的到来与数据处理新需求
LLMs 的出现为数据处理带来了新的可能性,同时也对数据处理流程提出了更高要求。在 LLMs 的应用场景中,数据交互形式发生了重大变化,人们开始使用自然语言与非结构化的自然语言文档进行交互。这意味着数据不再局限于以往定义明确的结构化形式,LLMs 需要在非结构化文本中寻找有意义的结构,以便理解和处理信息。