
大模型(LLM)
文章平均质量分 92
大模型之路
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
LLM记忆终极指南:从上下文窗口到高级智能体记忆系统
AI记忆技术的演进,本质上是让机器从"健忘的工具"成长为"有持续认知的伙伴"。这一旅程始于对上下文窗口限制的理解,经过缓冲、总结、检索等阶段,最终迈向能构建知识网络、主动调用记忆的智能体。原创 2025-07-28 08:15:00 · 732 阅读 · 0 评论 -
大语言模型与AI智能体中的上下文工程(Context Engineering)
上下文工程处于LLM研究和系统设计的前沿,融合了信息检索、记忆增强学习和人机交互的思想。随着LLM的演进(如更大的上下文窗口或混合专家等新架构),上下文工程也将不断发展,助力构建能在长时范围内可靠推理的真正上下文感知AI系统。原创 2025-07-27 08:15:00 · 591 阅读 · 0 评论 -
上下文工程实战指南:突破 LLM 性能瓶颈,规避常见风险
随着LLM技术的不断发展,上下文工程的重要性将愈发凸显。掌握这一技能,能够帮助我们更好地发挥LLM的潜力,构建出更加强大、高效、可靠的AI智能体,为各个领域带来更优质的服务和解决方案。原创 2025-07-24 08:15:00 · 871 阅读 · 0 评论 -
Kimi K2:适用于生产级AI代理的最佳开源大语言模型
Kimi K2凭借其独特的架构和先进的训练,在多智能体系统中发挥着核心作用,为生产级AI代理的应用提供了强大的支持。原创 2025-07-23 08:15:00 · 487 阅读 · 0 评论 -
从Ollama到vLLM:为高吞吐量LLM服务寻找稳定性
Ollama的便捷性适合快速验证想法,但vLLM的稳定性才是生产环境的基石。对于需要高吞吐量LLM服务的团队来说,放弃一点部署便捷性,换取可预测的性能和可控的成本,无疑是笔划算的交易。当然,技术选型没有银弹——如果你的需求是快速切换多种模型做实验,Ollama依然值得考虑;但如果追求的是GraphRAG这类重度应用的长期稳定,vLLM的陡峭学习曲线终将转化为实实在在的收益。原创 2025-07-19 08:15:00 · 926 阅读 · 0 评论 -
上下文工程:决定大语言模型应用成败的关键AI技能
上下文工程是优化AI代理性能的一种变革性方法,它使LLM能够精确而高效地处理复杂任务。通过掌握编写、选择、压缩和隔离上下文的策略,开发人员可以确保AI代理在其上下文窗口的约束范围内运行,同时提供准确且相关的响应。理解并缓解诸如污染、分心、混淆和冲突等上下文失效问题,进一步提高了AI的可靠性。原创 2025-07-18 14:43:27 · 1274 阅读 · 0 评论 -
从API视角解析MCP的演进历程
从API到MCP的演进,印证了技术发展的连续性。当我们剥开"智能代理"的新概念外衣,会发现其核心仍是输入输出的交互逻辑、标准化的接口设计与分布式系统的协作需求——这些正是API领域深耕多年的课题。MCP作为连接大语言模型与外部世界的桥梁,其发展轨迹既受限于技术可能性,也受惠于API积累的历史经验。原创 2025-07-11 08:15:00 · 1023 阅读 · 0 评论 -
DeepResearch Agent:系统考察与发展路径综述
深度研究智能体通过技术整合与范式创新,正在重塑知识生产方式。从信息获取的动态双轨制,到推理决策的多模态融合;从工业应用的场景落地,到评估体系的不断完善,DR技术已超越传统工具范畴,成为智能研究的基础设施。尽管面临数据获取壁垒、推理深度不足、评估体系滞后等挑战,但随着AI原生浏览器、自我进化架构等技术突破,DR智能体终将实现从"辅助研究"到"协同发现"的跨越,为科学探索与产业创新注入新的动力。原创 2025-07-05 08:15:00 · 776 阅读 · 0 评论 -
意图驱动的自然语言接口:混合LLM与意图分类方法
我们展示了一种混合系统,该系统将语义搜索(通过嵌入+FAISS)与为数据洁净室环境量身定制的安全SQL生成相结合。通过将SQL生成基于模式和意图模板,并仅在必要时回退到LLM,该架构在表达能力和安全性之间取得了实际平衡。原创 2025-07-01 08:15:00 · 1377 阅读 · 0 评论 -
选择合适的大语言模型:Llama、Mistral 与 DeepSeek 全面对比
从技术演进看,2025年的开源LLM已突破"参数竞赛"的初级阶段,转而在效率优化、领域专精和生态建设上展开竞争。Llama-3-8B的通用性、Mistral 7B的高效性、DeepSeek 8B的专业性,分别代表了当前开源模型的三大发展路径。对于技术决策者而言,理解这些模型的底层设计逻辑与适用场景,比单纯比较基准分数更具实际意义。原创 2025-06-30 08:15:00 · 845 阅读 · 0 评论 -
突破内存壁垒:使用vLLM实现分布式推理
从固定大小分块到语义感知分块,从单一GPU推理到分布式张量并行,大型语言模型的发展始终伴随着对内存限制的突破和推理效率的追求。vLLM作为这一领域的先锋,通过PagedAttention、分布式张量并行和高效的算子优化,为我们提供了突破内存壁垒的强大工具。原创 2025-06-29 08:15:00 · 1424 阅读 · 0 评论 -
Infinite Context:用工程化方案破解AI记忆挑战困境
Infinite Context的实践表明,AI记忆问题的突破不在于算法的玄学创新,而在于工程化思维的巧妙应用。通过将记忆流程解耦为"快速摄入-异步处理-智能检索"的流水线,系统实现了从理论概念到生产可用的跨越。原创 2025-06-22 08:15:00 · 913 阅读 · 0 评论 -
LLM面试 50 问终极指南:掌握核心知识,攻克下一场面试
LLM面试 50 问终极指南:掌握核心知识,攻克下一场面试原创 2025-06-21 08:15:00 · 646 阅读 · 0 评论 -
Meta, Google & NVIDIA的里程碑研究:大语言模型何时停止记忆并开始泛化
Meta、Google和NVIDIA的这项里程碑研究,为我们打开了一扇深入了解LLMs记忆与泛化能力的大门。它不仅解决了长期以来困扰学界和业界的难题,更为未来AI技术的发展指明了方向。相信在这一研究成果的基础上,我们能够开发出更加智能、高效、安全的人工智能系统,为人类社会的发展带来更多的福祉。原创 2025-06-20 08:15:00 · 904 阅读 · 0 评论 -
基于知识图谱的Zero-Shot问答:大语言模型的事实锚定新范式
实现通用型知识增强LLMs仍需跨学科突破:神经符号系统的深度融合、开放域图谱的实时推理、多模态知识的联合表示等。未来的研究可能从生物脑的“陈述性记忆-程序性记忆”机制中获取灵感,构建更接近人类推理的知识调用模型。正如知识图谱之父Tim Berners-Lee所言:“链接数据的终极目标是让机器理解世界的本质”,而KAPING正是这一目标在大语言模型时代的重要实践。原创 2025-06-15 08:15:00 · 844 阅读 · 0 评论 -
LLM评估:从原型开发到生产部署的全流程实践
正如文中案例所示,一个成熟的LLM评估框架并非一蹴而就,而是需要结合业务需求、技术选型和行业特性,通过不断迭代逐步完善。未来,随着评估工具的智能化(如自动生成测试用例、动态调整指标权重),LLM评估将成为AI工程化中愈发关键的基础设施,推动大语言模型从"实验室奇迹"走向"工业级解决方案"。原创 2025-06-13 08:15:00 · 688 阅读 · 0 评论 -
上下文窗口错觉:为什么你的 128K token 不起作用
大语言模型的长上下文能力并非“即插即用”的魔法,而是需要精细调校的复杂系统。唯有将工程智慧与技术洞察结合,才能穿透“容量膨胀”的迷雾,让每一个Token都产生真正的商业价值。原创 2025-06-10 08:15:00 · 662 阅读 · 0 评论 -
从数据抓取到智能分类:用 LangChain + 爬虫构建自动化工作流的实战笔记
本文通过作者的实际案例,展示了如何将网络爬虫和大语言模型相结合,解决现实中的繁琐任务自动化问题。这一实践不仅证明了技术在提高工作效率、减少人工劳动方面的巨大潜力,更揭示了构建实用AI解决方案的关键:明确需求、合理分工、选择合适的工具和技术,并在实践中不断迭代和优化。原创 2025-06-07 08:15:00 · 664 阅读 · 0 评论 -
基于本地LLM与MCP架构构建AI智能体全指南
基于本地LLM与MCP架构构建AI智能体全指南原创 2025-06-06 11:18:17 · 1060 阅读 · 0 评论 -
构建生产级LLM应用完整指南:从原型到落地的全流程实践
本文将以实战为导向,结合代码示例与架构设计,详解如何将一个基于OpenAI API的简单聊天机器人,升级为具备容错能力、成本可控且可弹性扩展的生产级系统。无论你是AI开发者、技术负责人还是创业团队,都能从中获取从环境搭建到运维监控的全生命周期解决方案。原创 2025-06-04 08:15:00 · 900 阅读 · 0 评论 -
AI 时代下设计模式的逆袭:为何经典架构思想从未过时?
设计模式的本质是软件设计基本原则的具象化,包括封装、抽象、多态、单一职责原则、开闭原则等。GoF模式仅是这些原则在面向对象编程中的具体应用示例,而架构模式、领域模式则是原则在更高层次的延伸。在AI时代,这些原则的重要性并未减弱,反而因开发效率的提升而更加凸显。AI能快速生成代码,但缺乏对原则的理解,无法判断代码是否遵循“高内聚、低耦合”“对扩展开放、对修改关闭”等核心思想。人类开发者的职责,正是通过设计模式将这些原则注入到AI生成的代码中,确保系统具备长期演进的能力。原创 2025-06-03 08:15:00 · 650 阅读 · 0 评论 -
数据提取场景下不同LLM模型对比分析
LLM模型为数据提取带来了革命性的机遇,但同时也带来了诸多挑战。通过深入的对比分析和持续的研究探索,我们能够更好地利用LLM技术,提升数据处理的效率和质量,为数字化时代的发展提供有力支持。原创 2025-05-28 08:15:00 · 742 阅读 · 0 评论 -
基于 DSPy 与 Pydantic 的自然语言参数提取框架(含code)
参数提取作为自然语言理解(NLU)的基础任务,其本质是从非结构化文本中识别并抽取关键信息,形成符合特定业务逻辑的结构化数据。这一过程不仅是对话系统理解用户意图的“桥梁”,更是自动化系统执行任务的前提。原创 2025-05-26 08:15:00 · 2886 阅读 · 0 评论 -
LLM中的知识留存:解决LLM的灾难性遗忘问题
灾难性遗忘的本质,是AI在从“专项学习”向“终身学习”跃迁中遭遇的认知瓶颈。从记忆回放的“温故知新”,到PEFT的“模块化生长”,再到元学习的“学习如何学习”,人类正逐步为AI搭建认知脚手架,使其既能在专业领域深耕,又不丢失通用智慧的根基。原创 2025-05-25 08:15:00 · 703 阅读 · 0 评论 -
LLM的 “自信陷阱”:上下文幻觉如何侵蚀 AI 信任?
大语言模型的出现无疑是人工智能领域的一次重大飞跃,其在信息处理和语言生成方面的能力令人惊叹。然而,上下文幻觉的存在提醒我们,单纯追求“智能”是不够的,AI系统还必须具备“可信”的品质。原创 2025-05-24 08:15:00 · 533 阅读 · 0 评论 -
如何基于自定义MCP服务器构建支持工具调用的Llama智能体(含code)
本文探讨了如何构建一个完全本地化的AI智能体,以解决隐私保护和数据主权问题。通过自定义的ModelContextProtocol(MCP)服务器和Llama3.2轻量级模型,实现了知识隔离和工具调用能力。MCP服务器通过只读访问控制、路径隐私保护和协议深度理解,确保数据在本地运行,避免泄露风险。Llama3.2模型因其设备友好性、工具调用支持和性能平衡,成为本地化智能体的理想选择。智能体架构包括MCP客户端与管理器、LLM模型接口和智能体逻辑层,通过工具调用决策与结果处理,实现问答逻辑。实验表明,该方案在知原创 2025-05-21 08:15:00 · 1641 阅读 · 0 评论 -
理解LLM评估指标综述:可靠评估LLM的最佳实践
大语言模型(LLMs)作为强大工具,在众多领域崭露头角。从客户服务、市场营销,到研究和产品开发,大语言模型的应用日益广泛,它们能够简化流程、辅助决策并提升用户体验。然而,能力越大,责任越大。确保这些模型的可靠性、性能和适用性至关重要,而大语言模型评估指标在其中发挥着关键作用。原创 2025-05-20 08:15:00 · 978 阅读 · 0 评论 -
探索LLM引用生成:方法与挑战
在大语言模型(LLM)蓬勃发展的当下,问答系统成为其最广泛的应用场景之一。然而,LLM “幻觉” 的倾向犹如高悬的达摩克利斯之剑,时刻警示着用户不能盲目轻信其回复。为了提升回复的可信度与可解释性,引用机制应运而生,成为增强LLM输出可靠性的关键手段。原创 2025-05-16 08:15:00 · 792 阅读 · 0 评论 -
突破LLM的token限制:多块上下文保留的实用系统(含code)
大语言模型(LLMs)取得了令人瞩目的进展,已广泛应用于文本生成、翻译、问答等诸多场景。然而,LLMs存在的一些局限性,如有限的上下文窗口(令牌限制)和缺乏长期记忆,限制了其在处理复杂任务时的表现。本文将深入探讨一种实用的解决方案,旨在克服这些限制,提升LLMs的性能。原创 2025-05-15 08:15:00 · 963 阅读 · 0 评论 -
阿里重磅发布Qwen3最佳开源LLM,击败 DeepSeek-R1,Llama4
Qwen3 在架构设计上融合了前沿的技术理念,延续并优化了 Transformer 架构。通过精心调整网络层数、注意力机制等关键组件,显著提升了模型对长序列文本的处理能力与效率。原创 2025-04-29 10:11:01 · 1418 阅读 · 0 评论 -
如何使用 Python 和 FastAPI 构建带认证的 MCP 服务器(含代码)
曾经只存在于科幻想象中的场景——AI与任何应用程序无缝对接,如今正逐步成为现实。就像API长期作为开发者与软件进行交互的接口一样,模型上下文协议(Model Context Protocol,MCP)正逐渐成为AI智能体以结构化、感知上下文的方式与应用程序交互的首选标准。诸如Anthropic(该协议的创立者)、OpenAI、谷歌等众多AI供应商都在广泛采用这一协议。对于应用程序开发者和维护者而言,用户通过AI智能体而非直接与应用交互的时代已经悄然来临,支持这一转变的关键就在于搭建MCP服务器。原创 2025-05-01 08:15:00 · 1100 阅读 · 0 评论 -
LLMs 防御升级:借函数调用机制打造无缝防御层
大语言模型(LLMs)展现出了令人惊叹的能力,其中函数调用功能更是让其如虎添翼。然而,这一强大功能也伴随着风险,恶意用户可能利用巧妙设计的提示进行隐秘操纵。本文将深入探讨如何将函数调用机制转化为一道无缝的防御层,有效检测和防范这些潜在威胁。原创 2025-04-29 08:15:00 · 842 阅读 · 0 评论 -
AI无边界:通过MCP实现不同智能体框架的协作
在人工智能飞速发展的当下,智能体框架如雨后春笋般不断涌现。从LangChain利用高度抽象的方式构建智能体,到CAMEL - AI为用户提供细致配置选项来创建智能体,不同框架各显神通。但这些框架之间就像说着不同“方言”的个体,彼此沟通困难重重。直到模型上下文协议(Model Context Protocol,MCP)的出现,才为打破这一僵局带来了希望,开启了不同智能体框架协作的新篇章。原创 2025-04-28 08:15:00 · 1057 阅读 · 0 评论 -
LLM in a Loop:借助评估提升LLM输出效果
常规的提示工程虽然能在一定程度上提升 LLM 在各类任务中的表现,却存在核心局限 —— 高度依赖模型一次性准确执行任务的能力。在此背景下,一种通过反馈循环来改进 LLM 系统的新方法应运而生,即 “LLM in a Loop”,它借助评估(evals)机制,为提升 LLM 的输出效果开辟了新的路径。原创 2025-04-27 08:15:00 · 641 阅读 · 0 评论 -
MCP 安全困境与Agent安全框架的应对之道
模型上下文协议(MCP)作为 LLM 与工具交互的一项重要标准,被赋予了 “AI 领域的 USB - C 接口” 的厚望,旨在为 AI 模型与外部工具之间建立起安全、双向的连接,让 AI 能够无缝对接各类数据源、文件系统、开发工具以及 Web 浏览器等外部系统,极大地拓展 AI 的应用能力。然而,随着 MCP 的广泛应用,其安全问题逐渐浮出水面,引发了业界的广泛关注。与此同时,代理安全框架的出现为解决 MCP 的安全困境带来了新的曙光,本文将深入探讨 MCP 面临的安全挑战以及代理安全框架的应对策略。原创 2025-04-26 08:15:00 · 1469 阅读 · 0 评论 -
如何利用网络爬虫进行大规模LLM数据收集
大语言模型的 “智慧” 很大程度上依赖于其训练数据的质量和数量。想要打造一个能够理解真实世界的模型,就必须获取来自真实世界的信息,而互联网无疑是海量数据的主要来源。本文将深入探讨如何利用网络爬虫收集大规模、适用于 AI 训练的数据,为人工智能模型的训练筑牢坚实基础。原创 2025-04-25 08:15:00 · 986 阅读 · 0 评论 -
构建智能多智能体 AI 系统:A2A 与 MCP 的深度剖析与实践指南
从企业复杂业务流程的自动化处理,到智能交互场景的深化拓展,多智能体协作模式展现出了超越单一模型的卓越效能。在这一发展进程中,Agent-to-Agent(A2A)协议和模型上下文协议(Model Context Protocol,MCP)作为两种主流架构方式,各自以独特的设计理念和技术特性,在不同应用场景中发挥着关键作用。深入探究它们的架构细节、技术权衡、实际应用案例以及未来发展趋势,对于企业和开发者构建高效、智能且可持续发展的 AI 系统具有重要意义。原创 2025-04-24 08:15:00 · 1304 阅读 · 0 评论 -
LLM架构实战:用 LangChain 和 LangGraph 打造多智能体研究助手(含代码)
大语言模型(LLM)的应用越来越广泛,从智能客服到内容创作,从数据分析到研究辅助,LLM 正逐渐改变着人们获取信息和解决问题的方式。今天,我们就来深入探讨大语言模型的架构,尤其是单智能体和多智能体架构,并手把手教大家用 LangChain 和 LangGraph 搭建一个多智能体研究助手。原创 2025-04-23 08:15:00 · 2802 阅读 · 0 评论 -
理解生产级LLM系统架构:关键组件与应用实践
对于企业级LLM应用而言,仅仅依靠基本提示词调用大语言模型远远不够。实际业务场景要求构建精心设计的系统,该系统需具备处理复杂查询、筛选海量非结构化文档、在多轮交互中保持上下文连贯以及大规模提供准确可靠结果的能力。深入剖析生产级 LLM 系统架构的核心组件与设计要点,不仅能为企业打造高效智能的应用提供指引,更是推动人工智能技术在实际生产中深度落地的关键。原创 2025-04-16 08:15:00 · 819 阅读 · 0 评论 -
大概念模型(Large Concept Models)会取代提示工程吗?
大概念模型致力于超越表面的语言模式,构建对抽象概念的深度理解和表达。与传统模型不同,它的训练数据来源更为广泛,涵盖了语言、符号、逻辑、多模态信息以及目标驱动的数据。这使得大概念模型具备了一系列强大的能力。在意图识别方面,它能够理解用户隐含的需求,即使用户没有精确表述,也能把握其核心意图。例如,当用户询问 “明天去爬山要准备什么”,模型能理解用户需要的不仅是物品清单,还可能包括天气信息、路线规划等相关内容。在抽象推理能力上,大概念模型可以进行多步逻辑推理和类比思考,解决复杂的问题。原创 2025-04-13 08:15:00 · 1298 阅读 · 0 评论