- 博客(320)
- 收藏
- 关注
原创 从TDD到EDD:为何评估驱动开发是AI工程的未来
测试驱动开发给了我们大胆重构的信心,而评估驱动开发给了我们构建可靠、经济高效且可逐步改进的AI系统的工具。
2025-07-30 08:15:00
456
原创 一小时内构建基于Gemma与Bright Data的生产级RAG应用
RAG技术的价值不仅在于提升AI系统的可靠性,更在于降低了智能应用的开发门槛。现在,即便是中小企业或个人开发者,也能构建出媲美科技巨头的专业AI工具,应用场景涵盖客户支持、市场分析、学术研究等多个领域。
2025-07-29 08:15:00
545
原创 LLM记忆终极指南:从上下文窗口到高级智能体记忆系统
AI记忆技术的演进,本质上是让机器从"健忘的工具"成长为"有持续认知的伙伴"。这一旅程始于对上下文窗口限制的理解,经过缓冲、总结、检索等阶段,最终迈向能构建知识网络、主动调用记忆的智能体。
2025-07-28 08:15:00
935
原创 大语言模型与AI智能体中的上下文工程(Context Engineering)
上下文工程处于LLM研究和系统设计的前沿,融合了信息检索、记忆增强学习和人机交互的思想。随着LLM的演进(如更大的上下文窗口或混合专家等新架构),上下文工程也将不断发展,助力构建能在长时范围内可靠推理的真正上下文感知AI系统。
2025-07-27 08:15:00
673
原创 OpenAI 多智能体研究框架:构建高效协作的AI代理系统
OpenAI的多智能体研究框架通过模块化设计和专业化代理协作,为复杂研究任务提供了高效解决方案。它不仅平衡了结果质量与资源消耗,还通过增强透明度和可追溯性,提高了AI系统的可靠性和可信度。
2025-07-26 08:15:00
677
原创 LangChain vs CrewAI vs Autogen:AI 代理框架选择实用指南
AI 代理并非万能灵药,但它们正在逐渐接近。通过适当的设置,代理框架可以承担以前需要人力完成的实际任务:研究、总结、分类、协调行动。但选择合适的框架至关重要。
2025-07-25 08:15:00
1045
原创 上下文工程实战指南:突破 LLM 性能瓶颈,规避常见风险
随着LLM技术的不断发展,上下文工程的重要性将愈发凸显。掌握这一技能,能够帮助我们更好地发挥LLM的潜力,构建出更加强大、高效、可靠的AI智能体,为各个领域带来更优质的服务和解决方案。
2025-07-24 08:15:00
872
原创 Kimi K2:适用于生产级AI代理的最佳开源大语言模型
Kimi K2凭借其独特的架构和先进的训练,在多智能体系统中发挥着核心作用,为生产级AI代理的应用提供了强大的支持。
2025-07-23 08:15:00
500
原创 使用LangGraph构建可投入生产的AI智能体
LangGraph简化了AI智能体的构建,使其超越有趣的演示,成为可靠的现实世界工具。通过将任务分解为小步骤(节点),用清晰的路径(边)连接它们,并跟踪信息(状态),LangGraph使复杂的工作流易于管理。我们的旅行规划助手示例展示了如何在实际应用中运用这些理念,并提供了代码、结果和清晰的工作流程图。
2025-07-22 08:15:00
709
原创 语境工程(Context Engineering)和提示工程(Prompt Engineering):AI时代的两大核心技术解析
提示工程和语境工程是同一枚硬币的两面,对于充分发挥AI系统的潜力都至关重要。提示工程是完成快速、一次性任务的首选,而语境工程对于构建稳健、可扩展的AI应用程序必不可少。通过掌握这两种技术,无论是写故事、编程序还是部署面向客户的聊天机器人,都能释放AI的全部潜力。从清晰的提示开始,然后随着需求的增长,逐步构建完善的语境工程体系。
2025-07-21 08:15:00
938
原创 Dynamic Chunking(H-Net):告别分词器的AI文本处理革新
H-Net与动态分块技术的出现,不是终点而是新起点。它让我们看到,当AI不再被人工规则限制,其理解语言的潜力将如何释放。在这条通往真正智能的道路上,每一次对固有假设的挑战,都在推动人工智能向人类的认知方式靠近——或许有一天,机器处理文本时,也能像我们那样,在字符的流动中自然把握意义的脉络。
2025-07-20 08:15:00
794
原创 从Ollama到vLLM:为高吞吐量LLM服务寻找稳定性
Ollama的便捷性适合快速验证想法,但vLLM的稳定性才是生产环境的基石。对于需要高吞吐量LLM服务的团队来说,放弃一点部署便捷性,换取可预测的性能和可控的成本,无疑是笔划算的交易。当然,技术选型没有银弹——如果你的需求是快速切换多种模型做实验,Ollama依然值得考虑;但如果追求的是GraphRAG这类重度应用的长期稳定,vLLM的陡峭学习曲线终将转化为实实在在的收益。
2025-07-19 08:15:00
932
原创 你需要了解的 AI 智能体设计模式
这四种设计模式——反思模式、工具使用模式、规划模式和多智能体协作模式——是构建 AI 智能体的基础,它们不仅能让智能体变得聪明,还能使其具备适应性、高效性,并有能力应对现实世界的复杂问题。
2025-07-18 14:45:47
955
原创 Agentic Memory:解析AI智能体的多种记忆类型
智能体记忆是AI智能体实现智能化、个性化和持续进化的核心支撑。情景记忆让智能体“记得过去”,能够从历史交互中学习;语义记忆让智能体“懂得知识”,能够提供准确全面的答案;程序记忆让智能体“知道规矩”,能够安全合规地运作;短期记忆让智能体“专注当下”,能够动态处理即时任务。
2025-07-18 14:44:29
701
原创 上下文工程:决定大语言模型应用成败的关键AI技能
上下文工程是优化AI代理性能的一种变革性方法,它使LLM能够精确而高效地处理复杂任务。通过掌握编写、选择、压缩和隔离上下文的策略,开发人员可以确保AI代理在其上下文窗口的约束范围内运行,同时提供准确且相关的响应。理解并缓解诸如污染、分心、混淆和冲突等上下文失效问题,进一步提高了AI的可靠性。
2025-07-18 14:43:27
1277
原创 长上下文在大语言模型检索增强生成(RAG)中的作用:全面综述
长上下文能力正在重塑RAG系统的边界,从“碎片化信息拼接”走向“全量知识整合”。它解决了传统RAG的核心痛点,使LLMs能够在复杂任务中发挥更大价值,但同时也带来了注意力稀释、效率下降等新挑战。通过提示工程优化、检索策略创新与模型技术突破,这些挑战正逐步得到缓解。
2025-07-15 08:15:00
2061
原创 大语言模型提示词技术:CoT、ReAct与DSP详解
CoT、ReAct和DSP作为提示词工程的核心技术,正在重塑人类与大语言模型的协作方式。它们不仅提升了模型处理复杂任务的能力,更通过结构化的推理与交互,增强了AI系统的可靠性与可解释性——这正是迈向可信AI的关键一步。
2025-07-14 08:15:00
1315
原创 智能分块助力更智能的RAG:2025年的方法与工具
数据分块是2025年高效RAG系统的支柱,使LLMs能够高效地处理和检索信息。LangChain和LlamaIndex等工具提供了一系列分块策略,从简单的固定大小拆分到先进的语义和智能体方法。
2025-07-13 08:15:00
892
原创 基准测试检索增强生成(RAG)管道:指标、挑战与洞见
RAG系统为企业提供了一种强大的工具,能够生成准确、有依据的实时答案,但要确保其性能,必须进行全面、系统的评估。通过明确评估的部分和指标,正视评估过程中面临的挑战,并从中获取有价值的洞见,开发者可以不断优化RAG管道,提高系统的可靠性、准确性和实用性。
2025-07-12 08:15:00
984
1
原创 从API视角解析MCP的演进历程
从API到MCP的演进,印证了技术发展的连续性。当我们剥开"智能代理"的新概念外衣,会发现其核心仍是输入输出的交互逻辑、标准化的接口设计与分布式系统的协作需求——这些正是API领域深耕多年的课题。MCP作为连接大语言模型与外部世界的桥梁,其发展轨迹既受限于技术可能性,也受惠于API积累的历史经验。
2025-07-11 08:15:00
1024
原创 如何评估并找到适合RAG的最佳嵌入模型——基于Ground Truth的方法
总之,评估嵌入模型时,需综合考虑准确率、延迟、模型大小以及实际业务场景的特点,通过Ground Truth方法科学对比,才能选出最适合特定RAG系统的嵌入模型,为后续生成器的高效工作奠定基础。
2025-07-10 08:15:00
748
原创 检索增强生成(RAG)的设计原理与架构解析
检索增强生成(RAG)通过将外部知识检索与内部模型推理解耦,开创了"可扩展、可更新、可验证"的AI新范式。从企业知识管理到智能客服,从科研辅助到实时问答,RAG正在重塑各类知识密集型应用。随着Graph RAG、Agentic RAG等新技术的发展,RAG系统正从简单的"检索-生成"工具,进化为具备自主决策、多模态理解、复杂推理能力的智能助手。
2025-07-09 09:20:11
813
原创 开源智能体AI框架全面对比:构建智能工作流的深度指南
智能体 AI 框架的快速演进为开发者带来了丰富的技术选择,同时也提出了更高的选型挑战。LangGraph 以其成熟的生态和全面的功能成为复杂工作流的首选,CrewAI 用角色化设计降低了多智能体协作的门槛,LlamaIndex Workflows 则为 RAG 应用树立了新的技术标杆。微软系框架(AutoGen、Semantic Kernel、TaskWeaver)凭借企业级能力在特定领域占据优势,Haystack Agents 则为生产级部署提供了坚实保障。
2025-07-07 08:15:00
830
原创 智能检索+图技术:Neo4j、Kùzu 与代理式 RAG 的崛起
从AlphaGo的模式识别到GPT的语言生成,AI的发展始终围绕着"如何让机器更好地理解世界"。Graph RAG与智能代理的出现,标志着AI正从"统计学习"向"知识推理"迈进——通过将显式知识图谱与隐式语言模型结合,我们正在构建既能"知其然"又能"知其所以然"的智能系统。
2025-07-06 08:15:00
1911
原创 DeepResearch Agent:系统考察与发展路径综述
深度研究智能体通过技术整合与范式创新,正在重塑知识生产方式。从信息获取的动态双轨制,到推理决策的多模态融合;从工业应用的场景落地,到评估体系的不断完善,DR技术已超越传统工具范畴,成为智能研究的基础设施。尽管面临数据获取壁垒、推理深度不足、评估体系滞后等挑战,但随着AI原生浏览器、自我进化架构等技术突破,DR智能体终将实现从"辅助研究"到"协同发现"的跨越,为科学探索与产业创新注入新的动力。
2025-07-05 08:15:00
778
1
原创 从RAG到Agentic RAG:构建更智能的检索增强系统
Agentic RAG的出现标志着检索增强技术从"被动工具"向"主动智能体"的关键跨越。它不再仅是LLM的"外挂知识库",而是具备认知、判断和优化能力的智能系统——如同一位经验丰富的研究员,能根据问题特性动态调整检索策略,像人类一样在"思考-查询-反思"的循环中逼近正确答案。
2025-07-04 08:15:00
1231
原创 2025年软件开发者必备的10大AI智能体框架全解析
从LangChain的模块化设计到MetaGPT的软件开发自动化,从Rasa的专业对话能力到Camel-AI的跨模态协作,2025年的AI智能体框架已形成丰富的技术生态。对于开发者而言,这些框架不仅是工具,更是构建智能应用的基础设施——它们降低了AI开发的技术门槛,拓展了可能性边界。
2025-07-03 08:15:00
1265
原创 为什么大多数 AI 代理在生产中失败(以及如何构建不会失败的 AI 代理)
AI智能体的生产化落地,是一场从"实验室艺术"到"工业级工程"的艰难跃迁。那些折戟沉沙的项目,往往败于对生产环境复杂性的低估,败于对工程化能力的忽视。而那些屹立不倒的智能体,无不是在扎实的工程基础上,构建了"稳定可靠、知识赋能、架构清晰、持续进化"的核心能力
2025-07-02 08:15:00
869
原创 意图驱动的自然语言接口:混合LLM与意图分类方法
我们展示了一种混合系统,该系统将语义搜索(通过嵌入+FAISS)与为数据洁净室环境量身定制的安全SQL生成相结合。通过将SQL生成基于模式和意图模板,并仅在必要时回退到LLM,该架构在表达能力和安全性之间取得了实际平衡。
2025-07-01 08:15:00
1377
原创 选择合适的大语言模型:Llama、Mistral 与 DeepSeek 全面对比
从技术演进看,2025年的开源LLM已突破"参数竞赛"的初级阶段,转而在效率优化、领域专精和生态建设上展开竞争。Llama-3-8B的通用性、Mistral 7B的高效性、DeepSeek 8B的专业性,分别代表了当前开源模型的三大发展路径。对于技术决策者而言,理解这些模型的底层设计逻辑与适用场景,比单纯比较基准分数更具实际意义。
2025-06-30 08:15:00
848
1
原创 突破内存壁垒:使用vLLM实现分布式推理
从固定大小分块到语义感知分块,从单一GPU推理到分布式张量并行,大型语言模型的发展始终伴随着对内存限制的突破和推理效率的追求。vLLM作为这一领域的先锋,通过PagedAttention、分布式张量并行和高效的算子优化,为我们提供了突破内存壁垒的强大工具。
2025-06-29 08:15:00
1424
原创 探索谷歌Agent开发工具包(ADK):从技术架构到应用生态的全面解析(含code)
谷歌Agent开发工具包(ADK)的推出,标志着智能体技术从理论研究走向大规模工程应用的转折点。它不仅提供了一套完整的智能体开发工具链,更通过模块化架构和开放生态,降低了复杂智能系统的开发门槛。
2025-06-28 08:15:00
1579
原创 面向RAG与LLM的分块策略权威指南:从基础原理到高级实践
从固定大小分块的简单性,到语义分块的细微差别,再到层次结构的系统性,分块技术塑造了知识呈现给模型的方式。选择的策略将决定系统是精确检索还是泛泛而谈,是生成有根有据的见解还是自信的幻觉。
2025-06-27 08:15:00
2036
原创 C2A 编排平台:构建可控可定制的智能体协同生态
C2A编排平台通过标准化框架、模块化设计和先进的数据管理技术,成功解决了多智能体协同中的互操作性和可控性难题,为构建复杂AI系统提供了可复用的“操作系统级”解决方案。其核心价值不仅在于技术层面的创新(如动态记忆链接、领域特定委托),更在于通过协同机制释放了智能体的集体效能——单个智能体的“专项技能”通过平台升维为整个网络的“群体智慧”。
2025-06-26 08:15:00
770
原创 人工智能通信协议的对比:MCP、ACP与A2A
MCP、ACP和A2A并非竞争关系,而是互补的技术方案,分别服务于模型能力扩展与代理间对等协作这两个不同的架构层。MCP是模型连接外部世界的“接口层”,ACP和A2A则是代理构建智能生态的“社交层”。开发者在选型时,需深入分析系统的架构目标(集中式vs分布式)、交互模式(工具调用vs代理对话)、数据特性(结构化vs非结构化)及团队技术栈等因素,避免因“错层使用”导致性能瓶颈或功能缺失。
2025-06-25 08:15:00
930
原创 大型多模态智能体与多智能体系统:对比分析
大型多模态智能体与多智能体系统代表了AI发展的两条核心路径——前者通过单一实体的多维度能力突破,实现对复杂世界的综合理解;后者借助分布式智能的协作优势,解决单体难以处理的大规模问题。两者并非对立,而是在技术互补与架构融合中走向共生:LMA为MAS的智能体赋予更强的环境理解能力,MAS为LMA的应用拓展提供群体协作框架。
2025-06-24 08:15:00
978
原创 探索Agno——构建智能体系统的全栈Python框架
Agno作为一个全面的智能体框架,通过模块化设计和丰富的功能组件,降低了构建复杂智能体系统的门槛。从单个智能体的快速原型到多智能体团队的复杂协作,从本地开发到生产级部署,Agno提供了全生命周期的支持。
2025-06-23 08:15:00
1689
原创 Infinite Context:用工程化方案破解AI记忆挑战困境
Infinite Context的实践表明,AI记忆问题的突破不在于算法的玄学创新,而在于工程化思维的巧妙应用。通过将记忆流程解耦为"快速摄入-异步处理-智能检索"的流水线,系统实现了从理论概念到生产可用的跨越。
2025-06-22 08:15:00
913
原创 Meta, Google & NVIDIA的里程碑研究:大语言模型何时停止记忆并开始泛化
Meta、Google和NVIDIA的这项里程碑研究,为我们打开了一扇深入了解LLMs记忆与泛化能力的大门。它不仅解决了长期以来困扰学界和业界的难题,更为未来AI技术的发展指明了方向。相信在这一研究成果的基础上,我们能够开发出更加智能、高效、安全的人工智能系统,为人类社会的发展带来更多的福祉。
2025-06-20 08:15:00
904
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人