瑞芯微RK3588 C++部署Yolov8检测和分割模型

最近这一个月在研究国产瑞芯微板子上部署yolov8的检测和分割模型,踩了很多坑,记录一下部署的过程和遇到的一些问题:

1 环境搭建

需要的环境和代码主要包括:
(1)rknn-toolkit2-1.5.2:工具链,开发环境
(2)rockchip-yolov8:pt模型转onnx模型
(3)yolov8_onnx2rknn:在(2)的基础上转检测rknn模型
(4)yolov8seg_onnx2rknn:在(2)的基础上转分割rknn模型
在这里插入图片描述
最好使用对应的环境,环境不匹配的话会出现很多问题。

2 ubuntu docker环境

Docker容器主要用来进行模型转换,也就是pt转onnx的过程,因此docker中需要用的的包主要是rockchip-yolov8,需要修改该代码,进行模型的转换,在linux服务器上安装docker环境,创建一个ubuntu系统的docker环境
这一部分的修改代码参考山水无移大哥的部署过程,贼清洗,膜拜一下,少走了很多弯路,直接贴上地址

3 模型转换问题

在转自己的pt到onnx模型时,容易出现以下问题:
(1)报错信息:

copying a param with shape torch.Size([64,64,3,3]) from checkpoint,the shape in current model is torch.Size(32,64,3,3)

在这里插入图片描述
主要的问题有两种:
1)在最后一步导出onnx时,yolov8s.yaml里面没有修改成自己的模型的类别信息;
2)自己训练的yolov8m模型,但是选择的yaml是yolov8s.yaml


from ultralytics import YOLO

# model = YOLO('/cytech_ai/sipingtest/rknntest/model/20230228_yolov8_LiftPerson_filter.pt')
# results = model(task='detect', mode='predict', source='/cytech_ai/sipingtest/rknntest/2.jpg', line_thickness=3, save=True, device='cpu')

model = YOLO('/cytech_ai/sipingtest/rknntest/rockchip-yolov8/ultralytics/cfg/models/v8/yolov8s.yaml')
results = model(task='detect', mode='predict', source='/cytech_ai/sipingtest/rknntest/2.jpg', line_thickness=3, save=True, device='cpu')

(2)多处修改时,最终的输出结果和分割模型的结果搞混了,导致模型输出对应不上:
在这里插入图片描述
在这里插入图片描述

4 RK3588上环境搭建

瑞芯微rk3588上,需要的环境主要是rknpu2,主要用来C++编写cmakelists文件时导入动态库和头文件,我这里将检测模型和分割模型全部集成到一个工程里面,分享一个个人的cmakelist文件:

cmake_minimum_required(VERSION 3.4.1)

# 声明一个 cmake 工程
set(PROJECT_NAME rknn_yolov8_AlgDetectModel)
project(${PROJECT_NAME})

set(CMAKE_CXX_STANDARD 11)


set(TARGET_SOC "rk3588")
set(CMAKE_C_COMPILER "aarch64")

# rknn api
if(TARGET_SOC STREQUAL "rk356x")
  set(RKNN_API_PATH ${CMAKE_SOURCE_DIR}/../../runtime/RK356X/${CMAKE_SYSTEM_NAME}/librknn_api)
  set(RKNN_API_PATH ${CMAKE_SOURCE_DIR}/../../runtime/RK356X/${CMAKE_SYSTEM_NAME}/librknn_api)
elseif(TARGET_SOC STREQUAL "rk3588")
  set(RKNN_API_PATH /home/siping/testrknn/rknpu2-1.5.2/runtime/RK3588/Linux/librknn_api/aarch64)
else()
  message(FATAL_ERROR "TARGET_SOC is not set, ref value: rk356x or rk3588 or rv110x")
endif()

if (CMAKE_SYSTEM_NAME STREQUAL "Android")
  set(RKNN_RT_LIB ${RKNN_API_PATH}/${CMAKE_ANDROID_ARCH_ABI}/librknnrt.so)
else()
  if (CMAKE_C_COMPILER MATCHES "aarch64")
    set(LIB_ARCH aarch64)
  else()
    set(LIB_ARCH armhf)
  endif()

  #直接链接这个库了
  set(RKNN_RT_LIB /home/siping/testrknn/rknpu2-1.5.2/runtime/RK3588/Linux/librknn_api/aarch64/librknnrt.so)
endif()

#链接头文件
include_directories(/home/siping/testrknn/rknpu2-1.5.2/runtime/RK3588/Linux/librknn_api/include)

#第三方依赖库
include_directories(${CMAKE_SOURCE_DIR}/../3rdparty)

# opencv
#if (CMAKE_SYSTEM_NAME STREQUAL "Android")
#    set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/../3rdparty/opencv/OpenCV-android-sdk/sdk/native/jni/abi-${CMAKE_ANDROID_ARCH_ABI})
#else()
#  if(LIB_ARCH STREQUAL "armhf")
#    set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/../3rdparty/opencv/opencv-linux-armhf/share/OpenCV)
#  else()
#    set(OpenCV_DIR ${CMAKE_SOURCE_DIR}/../3rdparty/opencv/opencv-linux-aarch64/share/OpenCV)
#  endif()
#endif()
#find_package(OpenCV REQUIRED)

#手动链接opencv480
set(OpenCV_DIR "/home/siping/thirdparty/opencv480/")
set(OpenCV_INCLUDE_DIRS "/home/siping/thirdparty/opencv480/include/opencv4")
set(OpenCV_LDFLAGS "/home/siping/thirdparty/opencv480/lib")

include_directories(${OpenCV_INCLUDE_DIRS})
link_directories(${OpenCV_LDFLAGS})

message(STATUS "OpenCV library status:")

message(STATUS "    version: ${OpenCV_VERSION}")
message(STATUS "    include path: ${OpenCV_INCLUDE_DIRS}")
message(STATUS "    libraries: ${OpenCV_LDFLAGS}")

#rga
if(TARGET_SOC STREQUAL "rk356x")
  set(RGA_PATH ${CMAKE_SOURCE_DIR}/../3rdparty/rga/RK356X)
elseif(TARGET_SOC STREQUAL "rk3588")
  set(RGA_PATH ${CMAKE_SOURCE_DIR}/../3rdparty/rga/RK3588)
else()
  message(FATAL_ERROR "TARGET_SOC is not set, ref value: rk356x or rk3588")
endif()
if (CMAKE_SYSTEM_NAME STREQUAL "Android")
  set(RGA_LIB ${RGA_PATH}/lib/Android/${CMAKE_ANDROID_ARCH_ABI}/librga.so)
else()
  if (CMAKE_C_COMPILER MATCHES "aarch64")
    set(LIB_ARCH aarch64)
  else()
    set(LIB_ARCH armhf)
  endif()
  #链接库,就这一个
  set(RGA_LIB ${RGA_PATH}/lib/Linux//${LIB_ARCH}/librga.so)
endif()
include_directories( ${RGA_PATH}/include)


#瑞芯微 glog日志库
set(GLOG_INCLUDE "/home/siping/thirdparty/glog_arm64/include/")
set(GLOG_LIB "/home/siping/thirdparty/glog_arm64/lib")

include_directories(${GLOG_INCLUDE})
link_directories(${GLOG_LIB})

message(STATUS "GLOG library status:")
message(STATUS "    include path: ${GLOG_INCLUDE}")
message(STATUS "    libraries: ${GLOG_LIB}")

#链接头文件
include_directories( ${CMAKE_SOURCE_DIR}/include)

#链接cpp文件
aux_source_directory(src DIR_CPP)

#==============================================================

# install target and libraries 将所有需要的依赖库放在同一个位置
#set install path
set(CMAKE_BUILD_RPATH "${OpenCV_LDFLAGS}")
set(CMAKE_INSTALL_PREFIX /home/siping/algunion/alglib)
message(STATUS "CMAKE_INSTALL_PREFIX = ${CMAKE_INSTALL_PREFIX}")



# set runtime path
set(CMAKE_INSTALL_RPATH ".")



# 如果想生成动态库,SHARE .so
#add_library(${PROJECT_NAME} SHARED  ${DIR_CPP})
#set(${PROJECT_NAME} PROPERTIES OUTPUT_NAME ${PROJECT_NAME})
add_executable(${PROJECT_NAME} src/main.cc ${DIR_CPP})

target_link_libraries(${PROJECT_NAME}
        ${RKNN_RT_LIB} #必须的runtime  librknnrt.so
        ${RGA_LIB} #rga  librga.so
        ${OpenCV_LDFLAGS}
        -lopencv_world
        ${GLOG_LIB}
        -lglog
        )

install(TARGETS ${PROJECT_NAME} DESTINATION ${CMAKE_INSTALL_PREFIX})

file(GLOB GLOG_LIB "${GLOG_LIB}/lib*.so.*")
file(GLOB OpenCV_LDFLAGS "${OpenCV_LDFLAGS}/lib*.so.*")

install(PROGRAMS
        ${OpenCV_LDFLAGS}
        ${RKNN_RT_LIB}
        ${RGA_LIB}
        ${GLOG_LIB}
        DESTINATION ${CMAKE_INSTALL_PREFIX})

install(DIRECTORY model DESTINATION "/home/siping/algunion")

前面用到的环境和代码打个包,上传到了百度网盘,C++的部署的代码参考的里面都有,我自己这边只是根据自己的项目做了集成,如有需要可私信。

5 参考

检测模型:https://blog.csdn.net/zhangqian_1/article/details/135523096?spm=1001.2014.3001.5502
分割模型:https://blog.csdn.net/zhangqian_1/article/details/131571838?spm=1001.2014.3001.5502

另外一种部署方法,仅检测模型(Python):
https://blog.csdn.net/m0_48979117/article/details/135628375

### RK3588平台上的YOLOv8语义分割实现配置 #### 一、环境准备 为了在RK3588平台上成功部署YOLOv8进行语义分割,需先搭建合适的开发环境。这通常涉及安装Linux操作系统(如Ubuntu),以及必要的依赖库,比如CUDA、cuDNN等用于加速计算的工具包。由于RK3588具备强大的NPU单元,在编译模型前应确认已正确安装对应的SDK版本。 #### 二、模型转换 YOLOv8原生支持PyTorch框架下的训练与推理流程。然而针对嵌入式设备的应用场景,则推荐将预训练好的权重文件通过ONNX作为中间表示形式导出[^1]。具体操作如下: ```bash from ultralytics import YOLO model = YOLO('path/to/yolov8n-seg.pt') # 加载官方提供的预训练模型 success = model.export(format='onnx', imgsz=640, simplify=True) # 导出为简化后的.onnx格式 ``` 上述命令会基于指定尺寸(此处设为640x640像素大小),把原始.pth格式转化为更易于移植至不同硬件架构上的通用描述——即ONNX格式,并开启图优化选项以提升性能表现。 #### 三、量化处理 考虑到实际应用场景中对资源消耗的要求较高,可以考虑采用INT8量化技术来减少内存占用量的同时保持较高的精度水平。此过程同样可以通过Python脚本完成: ```python import onnxruntime as ort from onnxruntime.quantization import quantize_dynamic, QuantType quantized_model_path = "yolov8_seg_quantized.onnx" quantize_dynamic(model_input=model_onnx, model_output=quantized_model_path, per_channel=True, reduce_range=False, weight_type=QuantType.QInt8) ``` 这段代码片段展示了如何利用`onnxruntime`库内的API接口执行动态范围内的整数化工作,从而获得更适合于边缘端使用的紧凑型模型版本。 #### 四、集成部署 最后一步就是要把经过前述步骤调整过的YOLOv8-Segmentation模型加载到RK3588芯片内部运行起来。鉴于该款处理器内置有专门设计用来加速神经网络运算效率的专用模块(NPU),因此建议优先选用由瑞芯微官方维护的支持库来进行最终封装。例如借助rknn-toolkit2工具链能够轻松达成目的: ```cpp #include <iostream> #include "rknn_api.h" int main() { rknn_context ctx; const char* modelPath = "./yolov8_seg_quantized.rknn"; /* 初始化 */ int ret = rknn_init(&ctx, modelPath, 0, 0, NULL); if (ret < 0){ std::cerr << "Failed to init rknn context." << std::endl; exit(-1); } // ...省略部分初始化参数设置... /* 执行推断 */ float input_data[] = {/* 输入图像数据 */}; rknn_tensor_attr output_attrs[OUTPUT_SIZE]; void *outputs[OUTPUT_SIZE]; ret = rknn_inputs_set(ctx, INPUT_COUNT, inputs); if(ret >= 0){ ret = rknn_run(ctx, nullptr); } if(ret >= 0){ ret = rknn_outputs_get(ctx, OUTPUT_SIZE, outputs, output_attrs); } // 处理输出... } ``` 以上C++程序段落给出了一个简单的例子说明怎样调用RKNNT API函数序列完成从创建上下文对象直至获取预测结果整个周期的操作逻辑。当然根据项目需求还可以进一步扩展功能特性,像加入图形界面交互组件或是视频流实时分析等功能。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值