- 博客(23)
- 收藏
- 关注
原创 【pyqt5制作悬浮且透明控件组】
打开Qt Designer:启动Qt Designer应用程序。1创建一个新的对话框:在Qt Designer中,选择"Dialog with Buttons Bottom"模板,创建一个新的对话框。2设计布局:使用Qt Designer的工具栏上的布局工具(如垂直布局、水平布局等)以及其他控件工具,在对话框中设计您的布局。3保存设计:保存设计文件为.ui文件。4转换为Python代码:使用pyuic5命令将.ui文件转换为对应的Python代码。在这个示例中,我们使用方法设置窗口标志,包括和。
2023-12-13 18:05:22
1010
原创 【机器学习】-- 聚类
聚类一:聚类分析概述简单来说,聚类(ClusterAnalysis)是将数据集划分为若干个相似对象组成的多个组(group)或簇(cluster)的过程。使得同一组对象之间的相似度最大化,不同组之间对象的相似度最小化。或者说一个簇就是由彼此相似的一组对象所构成的集合。不同簇中的对象不相似,或者相似度很低很低。1.聚类分析的定义聚类分析(ClusterAnalysis)是一个将数...
2020-11-16 11:38:32
2450
原创 【机器学习】--KNN
仅记录学习过程。一句话介绍:KNN是一种可用于分类和回归的方法。一般情况下用其进行分类任务。KNN三要素:1)模型,即对特征空间的划分;2)距离度量,欧氏距离等;3)分裂决策规则,即多数投票方法特点:KNN不具有显式的学习过程,实际上是利用训练集对特征空间进行划分,然后对新样本进行相邻K个最近样本的统计,并以多数类作为该样本的预测。理论部分就不做阐述了,直接上代码...
2020-11-16 11:38:14
282
原创 NLP-文本处理的流程(一)
当我们拿到一段文本的时候,要经过如何的处理才能进入模型呢,我们把这个过程称为文本预处理。一般经过这几个步骤:原始文本>分词>清洗>标准化>特征提取>建模1:分词分词的常用工具:Jieba分词 https://github.com/fxsjy/jiebaSnowNLP https://github.com/isnowfy/snownlp...
2020-04-11 00:43:05
5061
2
原创 深入理解Batch Normalization批标准化
由于近期在看论文代码的时候看到,在有无BN之后的初始化参数的方式不同 。怎么都想不通原因于是想在重新学习一下BatchNormalization标准化的用法参考论文:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift我之前对归一化的想法就是:将数据变成均值...
2020-04-08 00:39:46
182
原创 【机器学习】--决策树和随机森林
一、前述决策树是一种非线性有监督分类模型,随机森林是一种非线性有监督分类模型。线性分类模型比如说逻辑回归,可能会存在不可分问题,但是非线性分类就不存在。二、具体原理ID3算法1、相关术语根节点:最顶层的分类条件叶节点:代表每一个类别号中间节点:中间分类条件分枝:代表每一个条件的输出二叉树:每一个节点上有两个分枝多叉树:每一个节点上至少有两个分枝2、...
2020-04-08 00:38:12
1269
原创 [论文学习] OCNet: Object Context Network for Scene Parsing (Microsoft Research)
OCNet: Object Context Network for Scene ParsingOCNet:用于场景分析的对象上下文网络作者:Yuhui Yuan 、Jingdong Wang论文:http://arxiv.org/pdf/1809.00916v1.pdf代码:https://github.com/PkuRainBow/OCNet摘要上下文对于各种计算机视觉任务至关重要最...
2020-03-22 10:24:05
1022
转载 windows如何安装gensim
一、什么是gensimgensim是一个python的科学库,gensim包含了TF-IDF、随机投影、word2vec和document2vec算法的实现,分层Dirchlet过程(HDP),潜在语义分析(LSA)和潜在Dirichlet分配(LDA),包括分布式并行版本。主...
2020-03-21 23:47:43
1024
转载 【Git】报错:“fatal: Could not read from remote repository”
提交代码时报此错:在使用git提交代码时出现 fatal: Could not read from remote repository 这个错误,很简单首先,将本地生成的 id_rsa以及id_rsa.pub这两个文件删除掉然后,使用命令 ssh-keygen -t rsa -C "邮箱地址"重新生成密钥最后,将id_rsa.pub文件里的内容复制到 git 的SSH key保...
2020-03-18 00:07:58
1449
原创 【NLP论文笔记】From Word Embeddings To Document Distances
华盛顿大学发表于2015年的一篇论文,主要讲的是一种计算文本(语句)相似度的方法论。论文链接:http://proceedings.mlr.press/v37/kusnerb15.pdf第一次接触关于nlp方面的文章,并记录学习历程。From Word Embeddings To Document Distances摘要:本文主要提出了一种基于词移动距离(Word Mov...
2020-03-15 23:46:52
481
原创 在指定环境下载安装包
问题:今天在接手别人的程序的时候遇到找不到安装包的问题。但是我有好几个环境,那如何在指定的环境下下载安装包呢?比如在指定的(mne19)中间下载安装包1:conda avtivate mne19 # 激活环境2:source activate mne19 # 进入环境进入环境之后就可以在你想要的的环境下安装你想下载的安装包了3:pip install P...
2020-02-28 18:08:40
809
原创 如何阅读一篇文献
先说一下读文章时整体的战略布局,再说一下每个章节应该如何阅读。“三步法”有效的阅读文献。tips:清楚自己问什么读这篇文献,始终不忘初心。不要陷入细节中,花费大量的时间精力,读完却发现对自己的用处并不是很大。第一步:目标:快速浏览整篇文献,弄清楚大体想法。时间:5--10分钟需要阅读的内容主要包括:1:认真阅读文章的题目,摘要,引言。2:阅读标题和子标题,除此...
2019-10-12 11:43:10
690
原创 SENet:Squeeze-and-Excitation Networks
论文:《Squeeze-and-Excitation Networks》论文链接:https://arxiv.org/abs/1709.01507代码地址:https://github.com/hujie-frank/SENetPyTorch代码地址:https://github.com/miraclewkf/SENet-PyTorch一:SENet概述 Sque...
2019-09-25 17:43:22
501
原创 Softmax 回归( Softmax regression)
关于softmax的学习问题引入:我们都知道在做二分类的时候可以使用线性回归就可以解决,但是如果我们是多分类任务呢?比如说我们想识别猫 ,狗,小鸡这时候线性回归就不能很好的解决我们的问题了。有一种logistic回归的形式,叫做softmax回归可以很好的解决多分类问题。借用上面的例子,如果你想将猫,狗,小鸡进行分类。我们可以将把猫分为类1,狗为类 2,小鸡是类 3 ,如果不属于以上任何一类...
2019-09-25 11:53:48
739
原创 CCNet: Criss-Cross Attention for Semantic Segmentation
论文地址:https://arxiv.org/abs/1811.11721论文代码:https://github.com/speedinghzl/CCNet1 摘要CCNet的优点:占用较少的GPU内存。循环的交叉注意模块有效减少GPU内存使用。计算效率高。在计算远程依赖关系时,反复出现的交叉注意显著减少了约85%的非本地块。性能先进主要贡献:提出了一个新颖的纵横交叉关注...
2019-09-24 17:55:52
877
原创 Non-local Neural Networks
论文地址:https://arxiv.org/abs/1711.07971v1问题背景:由于经典的卷积和循环神经网络每次都只是针对局部 local neighborhood 进行处理,比如卷积操作只关注局部感受野(也就是卷积核覆盖的局部范围)的信息,这是典型的local operation,如果要增大神经元的感受野,你可能会想到将卷积核的大小设置成 feature map的尺寸,这样就能感受到...
2019-09-23 19:34:21
341
转载 pytorch学习: 构建网络模型的几种方法
利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。假设构建一个网络模型如下:卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层首先导入几种方法用到的包:import torchimport torch.nn.functional as Ffrom collections import OrderedDict第一种方法:...
2019-07-29 17:02:12
899
原创 add_argument() 的使用方法
背景:在复现文章的时候出现这种代码段。# Training settingsparser = argparse.ArgumentParser()parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.')parser.add_argument('-...
2019-07-24 14:57:56
51976
19
原创 pytorch如何实现简单的神经网络的方法。
以下是在pytorch tutorials学习中看到的,附上链接以示敬意。建立神经网络的一般方法是:1、定义神经网络结构(比如输入单元、隐藏单元等等)2、初始化模型的参数3、循环(迭代次数): ⑴实现向前传播 ⑵计算损失 ⑶实现向后传播以获得渐变 ⑷更新参数(梯度下降)模型:用numpy实现两层神经网络一个全连接ReLU神经网络,一个隐藏层,没有bias。用来从x预测...
2019-07-21 09:45:33
638
原创 随机种子 seed()到底是怎么回事。
让我们先来看一段代码,熟悉一下seed()的使用:import numpy as npnum = 0while (num < 5): np.random.seed(1) print(np.random.random()) num += 1print('-------------------------')num1 = 0np.random.seed(...
2019-06-22 10:24:12
15865
9
转载 RandomState的简单用法
在看Python程序的时候遇到了一下的代码:def __init__(self, batch_size, seed=328774): self.batch_size = batch_size self.seed = seed self.rng = RandomState(self.seed)RandomState 其实就是一个随机数发生器的容器。另外RandomSt...
2019-06-19 15:15:56
826
原创 numpy函数:shape[]的用法
**shape函数是numpy.core.fromnumeric中的函数,它的功能是查看矩阵或者数组的维数。shape[0]就是读取矩阵第一维度的长度shape[1]就是读取矩阵第二维度的长度...
2019-06-18 11:54:38
1610
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人