面包店算法-解决多进程同步问题

面包店算法是一种实现多进程互斥的软件算法,借鉴了顾客在面包店购买面包时的排队原理。每个进程代表顾客,通过抓取号码并按照号码大小和名字字典顺序进入临界区。算法包含choosing和number两个数据结构,确保进程安全地获取号码并进入临界区执行。算法避免了进程间的冲突,确保了同步。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

它是一种实现多进程互斥的软件算法。

该算法的基本思想源于顾客在面包店中购买面包时的排队原理. 顾客在进入面包店前, 首先抓一个号, 然后按照号码由小到大的次序依次进入面包店购买面包. 这里, 面包店发放的号码是由小到大的, 但是两个或两个以上的顾客却有可能得到相同的号码(使所抓号码不同需要互斥), 如果多个顾客抓到相同的号码, 则规定按照顾客名字的字典次序进行排序, 这里假定顾客是没有重名的. 在计算机系统中, 顾客就相当于进程, 每个进程有一个唯一的标识, 我们用P的下面加一个下标来表示. 例如: 对于 Pi和Pj, 如果有i<j, 则先为Pi服务, 即Pi先进入临界区.

该算法的实现需要如下两个数据结构:
  int choosing[n];
  int number[n];
choosing[n] 表示进程是否正在抓号,正在抓号的进程choosing[i]为1,否则为0, 其初值均为0.

number[n] 用来记录各个进程所抓到的号码, 如number[i]为0, 则进程Pi没有抓号, 如number[i]不为0, 则其正整数值为进程Pi所抓到的号码, 其初值均为0.
    为了方便起见, 我们定义下述表记法:
  ● (a,b)<(c,d)   表示: 若a<c 则 整个表达式为真;若a==c且b<d则 整个表达式为真。

  ● max(a0,…,an-1) 其值为一正整数k, 对于所有i, 0≤i≤n-1, k≥ai。 表示: 在当前所有号中获得一个最大的号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值