AtCoder Regular Contest 107 B - Quadruple

博客围绕给定两个整数N和K,求满足1 ≤ a,b,c,d ≤ N且a + b - c - d = K的组合方式数量展开。通过将a+b、c+d看作整体A、B,分析其取值范围,确定a、b和c、d的组合方式,遍历A取值累加组合数得到结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

在这里插入图片描述

题目翻译:

给你两个整数NK,求有多少种组合方式 (a,b,c,d),使其同时满足下面两个条件:

  • 1 ≤ a,b,c,d ≤ N
  • a + b - c - d = K
解题思路:

首先来分析一下a + b - c - d = K
a + b - c - d = K => a + b - (c + d) = K
a+bc+d看做两个整体AB,即A - B = K(A = B + K,B = A - K)
可以发现K的正负,对结果并没有影响,所以我们直接对K取绝对值,方便后面的计算。
再来分析一下A和B的取值范围,因为K现在是正的,所以A肯定大于等于B,B的最小值是2,所以A的最小值是2+K,A的最大值是2×N,所以B的最大值2×N-K。即A∈[2+K,2×N],B∈[2,2×N-K]
再往细了分析:
在确定A的情况下,怎么计算a + b = A有多少种组合方式?
同样,我们先来确定a和b的取值范围。
可知a的最小值受b的最大值和A的影响,同时又受1≤a≤N的影响,所以a的最小值mina是max(A-N,1)。a的最大值受b的最小值和A的影响,同时又受1≤a≤N的影响,所以a的最大值maxa是min(A-1,N)。而a,b是可以交换的,所以a的取值范围就是b的取值范围。因此在确定A的情况下,a,b共有maxa-mina+1种组合方式
同理可以知道在该情况下,c,d共有min(B-1,N)-max(B-N,1)+1种组合方式
所以共有 (min(A-1,N)-max(A-N,1)+1)×(min(B-1,N)-max(B-N,1)+1) 种可能
然后我们遍历A的所有可能取值,每次遍历累加可能的组合数,就可以得到最终的结果。

我的代码:
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdio>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std;
int main(){
//	freopen("1.txt","r",stdin);
	long long n,k,a,b,maxa,mina,maxb,minb;
	long long ans=0;
	cin>>n>>k;
	k=abs(k);
	for(int i=2+k;i<=2*n;i++){//
		a=i,b=i-k;
		maxa=(long long)min(n,a-1);
		mina = (long long)max(1LL,a-n);
		maxb=(long long)min(n,b-1);
		minb = (long long)max(1LL,b-n);
		ans+=(maxa-mina+1)*(maxb-minb+1);
	}
	cout<<ans<<endl;
	return 0;
}
总结:

又是long long,又没有估计数据的范围

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值