作业题
时间限制:3000 ms | 内存限制:65535 KB
难度:3
-
描述
-
小白同学这学期有一门课程叫做《数值计算方法》,这是一门有效使用数字计算机求数学问题近似解的方法与过程,以及由相关理论构成的学科……
今天他们的Teacher S,给他们出了一道作业题。Teacher S给了他们很多的点,让他们利用拉格朗日插值公式,计算出某严格单调函数的曲线。现在小白抄下了这些点,但是问题出现了,由于我们的小白同学上课时走了一下神,他多抄下来很多点,也就是说这些点整体连线不一定还是严格递增或递减的了。这可怎么处理呢。为此我们的小白同学制定了以下的取点规则:
1、取出尽可能多的满足构成严格单调曲线的点,作为曲线上的点。
2、通过拉格朗日插值公式,计算出曲线的方程
但是,他又遇到了一个问题,他发现他写下了上百个点。[- -!佩服吧],这就很难处理了(O_O).。由于拉格朗日插值公式的计算量与处理的点数有关,因此他请大家来帮忙,帮他统计一下,曲线上最多有多少点,以此来估计计算量。
已知:没有任何两个点的横坐标是相同的。
-
输入
- 本题包含多组数据:
首先,是一个整数T,代表数据的组数。
然后,下面是T组测试数据。对于每组数据包含两行:
第一行:一个数字N(1<=N<=999),代表输入的点的个数。
第二行:包含N个数对X(1<=x<=10000),Y(1<=Y<=10000),代表所取的点的横纵坐标。
输出 - 每组输出各占一行,输出公一个整数,表示曲线上最多的点数 样例输入
-
2 2 1 2 3 4 3 2 2 1 3 3 4
样例输出 -
2 2
- 本题包含多组数据:
code:
求一个序列中,单调子序列的最大长度,包括递增序列 递减序列,二者最大值为答案,且题目中给出,横坐标不会相同,秩序对横坐标排序即可,
#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
using namespace std;
struct node
{
int x,y;
} c[1000];
int dp1[1000],dp2[1000];
int cmp(node a,node b)
{
if(a.x!=b.x)
return a.x<b.x;
}
int main()
{
int n,t,i,j,ans;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=0; i<n; i++)
scanf("%d%d",&c[i].x,&c[i].y);
sort(c,c+n,cmp);
for(i=0; i<n; i++)
{
dp1[i]=1;
dp2[i]=1;
}
for(i=1; i<n; i++)
for(j=i-1; j>=0; j--)
{
if(c[i].y>c[j].y)
dp1[i]=max(dp1[i],dp1[j]+1);
if(c[i].y<c[j].y)
dp2[i]=max(dp2[i],dp2[j]+1);
}
ans=0;
for(i=0; i<n; i++)
{
if(ans<dp1[i])
ans=dp1[i];
if(ans<dp2[i])
ans=dp2[i];
}
cout<<ans<<endl;
}
return 0;
}