【NLP】医疗诊疗对话意图识别挑战赛【阿里云:天池比赛】

比赛地址:医疗诊疗对话意图识别

V1:

方案:BERT
预训练模型:bert-base-chinese

分数:0.8043

 Val P: 0.7621,  Val R: 76.7676%,  Val F1: 0.7619,  Val Acc: 81.5204%

V2:
分数:0.8158
排名:长期赛:193(本次)/1561

方案:BERT+CNN
预训练模型:bert-base-chinese

训练结果:
Val P: 0.758,  Val R: 76.6730%,  Val F1: 0.7595,  Val Acc: 81.7135%

后期优化思路

1、使用行业模型微调

2、尝试bert+bilstm+crf

3、词嵌入时单独增加角色信息编码

4、多模型融合

运行脚本:
python run_bert.py

源码下载:

比赛地址:医疗诊疗对话意图识别挑战赛BERT/BERT+CNN资源-CSDN文库

模型:配置bert

import torch
import torch.nn as nn
# from pytorch_pretrained_bert import BertModel, BertTokenizer
from transformers import BertModel, BertTokenizer, BertConfig
from transformers import AutoModel, AutoTokenizer, AutoConfig
import os



class Config(object):

    """配置参数"""
    def __init__(self, dataset, local=False):
        self.local = local
        self.date='20241106'
        self.model_name = 'bert_'+self.date
        self.train_path = dataset + '/data/train.txt'                                # 训练集
        self.dev_path = dataset + '/data/dev.txt'                                    # 验证集
        self.test_path = dataset +
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值