NER解决方案——biaffine

该文介绍了如何利用双仿射注意力矩阵来解决实体嵌套问题。首先,通过BERT对输入进行编码,然后将编码结果送入两个FFN层。接着,引入的双仿射注意力矩阵与FFN的输出进行矩阵运算,生成输出评分矩阵。最后,采用交叉熵损失函数作为优化目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

基本框架

引入双仿射注意力矩阵,可以解决实体嵌套问题
在这里插入图片描述
具体的实现框架如下:

在这里插入图片描述
编码: 经过bert编码,分别送入到两个ffn层,
双仿射注意力:引入双仿射注意力矩阵,分别与ffn输出层做矩阵计算;
输出:获取输出评分矩阵,loss为交叉熵损失函数

基于BERT+Biaffine结构的关系抽取模型源码和文档说明,个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽取模型源码和文档说明基于BERT+Biaffine结构的关系抽
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值