
PyTorch生成式人工智能从入门到项目实战
文章平均质量分 97
原价99.9,限时29.9🔥火爆订阅中(五日后恢复原价)。从神经网络基础到Stable Diffusion实战,本专栏将带你从深度学习小白进阶生成式人工智能实战高手,让创造力突破想象边界!立即订阅,用代码点燃生成式人工智能的无限可能!
优惠券已抵扣
余额抵扣
还需支付
¥29.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
盼小辉丶
记录学习历程,分享学习心得,关注深度学习,欢迎交流学习.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
PyTorch生成式人工智能实战:从零打造创意引擎
专栏《PyTorch 生成式人工智能实战》深入探讨了生成式人工智能,这项技术通过其高效和快速的内容创作能力,正在重塑众多行业。具体来说,将学习如何使用生成式模型来创建各种形式的内容:数字、图像、文本和音频。此外,还将学习从零开始构建这些模型,以便深入理解生成式 AI 的内部工作原理,我们将使用 Python 和 PyTorch 来构建、训练和使用这些模型。原创 2025-03-24 08:48:14 · 20275 阅读 · 74 评论 -
PyTorch生成式人工智能(1)——神经网络与模型训练过程详解
在本节中,我们介绍了传统机器学习与人工神经网络间的差异,并了解了如何在实现前向传播之前连接网络的各个层,以计算与网络当前权重对应的损失值;实现了反向传播以优化权重达到最小化损失值的目标。并实现了网络的所有关键组成——前向传播、激活函数、损失函数、链式法则和梯度下降,从零开始构建并训练了一个简单的神经网络。原创 2025-04-17 08:51:54 · 5603 阅读 · 91 评论 -
PyTorch生成式人工智能(2)——PyTorch基础
PyTorch 张量是多维数据的基本结构,支持灵活的形状变换、索引操作和数学计算。数据类型的选择(如精度权衡)和形状匹配是深度学习中的重要考量。通过张量操作,可高效实现数据预处理、特征整合及模型输入输出处理。原创 2025-04-24 09:14:08 · 3803 阅读 · 2 评论 -
PyTorch生成式人工智能(3)——使用PyTorch构建神经网络
在本节中,我们使用 PyTorch 在简单数据集上构建了一个神经网络,训练神经网络来映射输入和输出,并通过执行反向传播来更新权重值以最小化损失值,并利用 Sequential 类简化网络构建过程;介绍了获取网络中间值的常用方法,以及如何使用 save、load 方法保存和加载模型,以避免再次训练模型。原创 2025-05-08 08:49:47 · 3606 阅读 · 13 评论 -
PyTorch生成式人工智能(4)——卷积神经网络(Convolutional Neural Network, CNN)详解
卷积神经网络 (Convolutional Neural Network, CNN) 是一种广泛应用的深度学习模型。通过参数共享、局部感知和空间结构等优势,能够更好地处理图像数据,并在图像识别、目标检测和图像生成等任务中展现出强大的能力。在本节中,介绍了卷积的计算方法以及卷积神经网络的基本组件,并使用 PyTorch 构建了卷积神经网络以深入了解其工作原理。原创 2025-05-12 08:48:50 · 2440 阅读 · 85 评论 -
PyTorch生成式人工智能(5)——分类任务详解
在本节中,将学习如何使用 PyTorch 创建深度神经网络来执行二分类和多类别分类任务,以便熟练掌握深度学习和分类任务。具体而言,我们将构建一个完整的端到端深度学习项目,使用 PyTorch 将灰度图像的服装物品分类为不同类别,包括外套、包、运动鞋、衬衫等。目的是创建能够执行二分类和多类别分类任务的深度神经网络,为后续学习奠定基础。原创 2025-04-25 08:27:14 · 4419 阅读 · 39 评论 -
PyTorch生成式人工智能(6)——生成模型(Generative Model)详解
本节介绍了人工智能的一个重要分支——生成模型,介绍了生成模型理论和应用的最新进展。我们从一个简单的示例开始,了解了生成模型最终关注的是对数据的潜在分布进行建模。通过总结生成模型框架,以理解生成模型的重要属性。然后,介绍了有助于理解生成模型的理论基础和关键概率概念,并概述了生成模型的分类方法。原创 2025-05-07 08:43:44 · 3395 阅读 · 25 评论 -
PyTorch生成式人工智能(7)——生成对抗网络(Generative Adversarial Network, GAN)实践详解
生成对抗网络 (Generative Adversarial Network, GAN) 最早由 Ian Goodfellow 于 2014 年提出,其中生成器试图创建与真实样本无法区分的数据样本,而判别器则试图区分生成器生成的样本与真实样本。在本节中,我们将介绍 GAN 的理论基础。然后,介绍如何使用 PyTorch 从零开始构建 GAN,以便了解所有细节,深入理解 GAN 的内部工作原理,为后续讨论 GAN 的其他更高级内容奠定基础,比如生成高分辨率图像或逼真的音乐。原创 2025-05-26 08:13:45 · 2295 阅读 · 10 评论 -
PyTorch生成式人工智能(8)——深度卷积生成对抗网络
本文采用深度卷积生成对抗网络 (DCGAN) 生成高分辨率动漫面部图像。通过卷积层提取局部特征,反卷积层上采样,结合批归一化稳定训练。数据集包含 63632 张图像,预处理为 64×64 分辨率并归一化。鉴别器 (D) 由卷积层和 LeakyReLU 构成,生成器 (G) 镜像其结构,使用转置卷积生成图像。训练中交替优化 D 和 G,20 个 epoch 后生成图像质量显著提升。实验表明,DCGAN 能高效合成逼真动漫面部,验证了卷积神经网络在图像生成任务中的有效性。原创 2025-06-04 08:40:41 · 1587 阅读 · 5 评论 -
PyTorch生成式人工智能(9)——Pix2Pix详解与实现
Pix2Pix 是强大的图像转换框架,通过对抗训练和 U-Net 结构,使得生成网络能够将输入图像转换为与之对应的输出图像。同时在训练过程中,引入了像素级损失衡量生成图像与目标图像之间的像素级差异,促使生成网络生成更加细致和逼真的图像。本节中,介绍了 Pix2Pix 的模型训练流程,并使用 ShoeV2 数据集训练了一个 Pix2Pix 模型根据边缘图像生成鞋子图像。原创 2025-06-13 08:15:51 · 1916 阅读 · 7 评论 -
PyTorch生成式人工智能(10)——CyclelGAN详解与实现
本文详细介绍了CycleGAN的原理与实现,这是一种能够在无配对样本情况下学习不同图像域间转换的生成对抗网络。CycleGAN通过引入循环一致性损失,确保转换后的图像能够重建原始图像,从而保留关键特征。文章以黑发与金发人脸转换为例,从数据集处理、模型构建到训练策略进行了完整讲解。原创 2025-06-18 09:44:23 · 1706 阅读 · 33 评论 -
PyTorch生成式人工智能(11)——神经风格迁移
神经风格迁移是一种利用深度学习技术合成两个图像风格的方法,通过卷积神经网络提取图像的特征表示,并通过优化损失函数的方式合成新的图像,从而创造出独特而富有艺术感的合成图像。在本节中,首先介绍了神经风格迁移的核心思想与风格迁移图像的生成流程,然后利用 PyTorch 从零开始实现了神经风格迁移算法,可以通过修改模型中的超参数来生成不同观感的图像。原创 2025-06-22 20:38:44 · 1097 阅读 · 9 评论 -
PyTorch生成式人工智能(12)——StyleGAN详解与实现
StyleGAN (Style-Generative Adversarial Networks) 是生成对抗网络 (GAN) 的变体,是一种无监督学习模型,用于生成逼真且高分辨率的图像。与传统 GAN 不同,StyleGAN 引入了两个关键概念:样式迁移和逐渐增强。样式迁移允许生成网络控制图像的风格和外观,从而生成具有不同特征的图像。逐渐增强则是指生成网络逐层地生成图像,先生成粗略的细节,然后逐渐添加更多细节和结构,从而获得更加逼真的图像。原创 2025-06-23 08:39:43 · 983 阅读 · 11 评论 -
PyTorch生成式人工智能(13)——WGAN详解与实现
Wasserstein GAN (WGAN) 是一种通过使用 Wasserstein 距离代替二元交叉熵作为损失函数来提高 GAN 模型训练稳定性和性能的技术。此外,为了让 Wasserstein 距离正常工作,WGAN 中的判别器(评论家)必须是 1-Lipschitz 连续的,这意味着判别器函数的梯度范数在任何地方都必须最大为 1。WGAN 中的梯度惩罚为损失函数添加了一个正则化项,以更有效地强制执行 Lipschitz 连续性约束。原创 2025-07-02 08:21:23 · 1107 阅读 · 5 评论 -
PyTorch生成式人工智能(14)——条件生成对抗网络(conditional GAN,cGAN)
本文介绍了条件生成对抗网络(cGAN)的原理与实践应用。首先对比了两种控制生成图像特征的方法:潜空间向量选择和cGAN标签控制,分析了各自的优缺点。随后详细讲解了cGAN的构建过程,包括带标签扩展的评论家网络和生成器网络设计,以及使用Wasserstein距离和梯度惩罚的训练策略。通过在eyeglasses数据集训练cGAN,展示了如何实现标签条件控制生成。进一步探讨了结合潜空间向量运算和标签插值的方法,实现了对多个特征(如性别和眼镜)的联合控制。原创 2025-07-04 16:56:34 · 1470 阅读 · 18 评论 -
PyTorch生成式人工智能(15)——自注意力生成对抗网络(Self-Attention GAN, SAGAN)
自注意力生成对抗网络 (Self-Attention Generative Adversarial Network, SAGAN) 通过在传统 GAN 中嵌入自注意力机制,有效捕捉图像中的长距离依赖关系,从而生成具有全局一致性和丰富细节的图像。本节详细阐述了自注意力模块的工作原理,包括查询-键-值映射和注意力权重计算,并展示了谱归一化技术如何提升训练稳定性。本节介绍了 SAGAN 的核心原理与 PyTorch 实现,并给出了在 CelebA 人脸数据集上的训练流程和生成效果。原创 2025-07-10 10:19:07 · 1226 阅读 · 11 评论 -
PyTorch生成式人工智能(16)——自编码器(AutoEncoder)详解
自编码器 (AutoEncoder, AE) 具有双重组件结构:编码器和解码器。编码器将数据压缩为低维空间中的抽象表示(潜空间),而解码器将编码的信息解压并重建数据。本节介绍了自编码器 AE 及其基本结构。为了深入理解 AE 的工作原理,构建并训练一个自编码器生成手写数字。原创 2025-06-26 08:34:08 · 657 阅读 · 6 评论 -
PyTorch生成式人工智能(17)——变分自编码器详解与实现
变分自编码器 (Variational Auto-Encoder, VAE) 是对自编码器 (AutoEncoder, AE) 的改进,通过将输入编码为潜空间中的概率分布而非固定点,解决了 AE 在生成新样本和输入插值方面的局限性。VAE 的损失函数包含重建损失和 KL 散度,后者确保潜空间接近标准正态分布,从而生成连续且可解释的潜表示。本文从零开始构建了一个用于生成人脸图像的 VAE 模型,使用卷积神经网络作为编码器和解码器,并在 eyeglasses 数据集上进行训练。原创 2025-07-14 08:36:35 · 1064 阅读 · 2 评论 -
PyTorch生成式人工智能(18)——循环神经网络详解与实现
本节系统介绍了文本生成的核心技术,重点解析循环神经网络 (RNN) 及其改进模型长短期记忆网络 (LSTM) 的工作原理,详细阐述了 RNN 通过隐藏状态捕捉时序信息的机制,以及 LSTM 利用门控单元解决梯度消失问题的创新设计。进一步探讨了自然语言处理的基础技术:包括字符/单词/子词三种分词策略,以及词嵌入技术如何通过低维稠密向量替代独热编码,有效捕捉语义关联。通过 PyTorch 的 nn.Embedding 层实现说明了词嵌入在提升模型效率与语义理解方面的关键作用。原创 2025-07-17 10:11:23 · 1189 阅读 · 26 评论 -
PyTorch生成式人工智能(19)——自回归模型详解与实现
本节通过训练一个基于长短期记忆 (Long Short-Term Memory, LSTM) 网络的文本生成模型,系统介绍了自然语言处理 (Natuarl Language Processing, NLP) 任务的核心技术流程。首先对《安娜·卡列尼娜》文本进行分词和索引化处理,构建词元到整数的映射关系。模型采用序列到序列的训练方式,通过预测下一个词元来学习文本特征。在生成阶段,模型以自回归方式逐步生成文本,并可通过温度和 Top-K 采样调控生成结果的随机性与创造性。原创 2025-07-21 08:47:40 · 1421 阅读 · 14 评论 -
PyTorch生成式人工智能(20)——像素卷积神经网络(PixelCNN)
像素卷积神经网络 (Pixel Convolutional Neural Network, PixelCNN) 是于 2016 年提出的一种图像生成模型,其根据前面的像素预测下一个像素的概率来逐像素地生成图像,模型可以通过自回归的方式进行训练以生成图像。在本节中,将使用 PyTorch 实现 PixelCNN 模型并将其应用于图像数据生成中。原创 2025-07-28 08:22:10 · 784 阅读 · 9 评论 -
PyTorch生成式人工智能——生成对抗网络数值数据生成
在本节,首先学习如何将训练数据转换为神经网络能够理解的格式——独热编码 (one-hot encoding)。然后,将独热编码变量转换回 0 到 99 之间的整数,便于人类理解。换句话说,实际上是在将数据在可读格式与模型所需的格式之间进行转换。之后,将创建一个判别器和一个生成器,并训练生成对抗网络 (Generative Adversarial Network, GAN),使用提前停止方法来判断训练何时结束。训练完成后,丢弃判别器,使用已训练好的生成器生成具有所需模式的整数序列。原创 2025-05-26 08:18:45 · 2005 阅读 · 19 评论 -
PyTorch生成式人工智能——基于生成对抗网络生成服饰图像
我们已经学习了生成对抗网络 (Generative Adversarial Network, GAN) 的工作原理,接下来,将学习如何将其应用于生成其他形式的内容。在本节中,介绍使用 GAN 创建灰度图像,包括外套、衬衫、凉鞋等服饰,学习在设计生成器网络时如何镜像判别器网络。在本节中,生成器和判别器网络使用全连接层,全连接层的每个神经元都与前一层和后一层的所有神经元相连接。原创 2025-06-01 10:17:33 · 1873 阅读 · 4 评论