云淡风清

不知何时,雾霾已经占据了北京人心里的大部分空间。以前还不太理解中国人见面,问候的是:吃饭了吗?英国人却是:今天天气不错哦!现在理解了,也接受了,平常见面把吃饭的问候也改成天气了。

离开了工作十来年的公司,经历一个不长不短的旅行,重新走入职场。前公司就在家门口,开车5分钟,走路15分钟,风雨、交通与我并不相干。在一个地方待的够久了,能待这么久让人惊讶,待这么久走了也让人惊讶。然而选择总是痛苦的,得到一些,失去一些;自由一些,动荡一些;稳定一些,安逸一些;陌生一些,紧张一些;熟悉一些,轻松一些。在经历一番内心抉择之后,我还是选择了离开,为了爱,为了不甘,也为了多些人生的经历。

我从来不是有心有大志的人,读书不过取巧。在长达近二十年的读书生涯中,大部分时间是随波逐流,不上不下,有时也会自嘲中流砥柱。幸运的是在关键的时间段,做出了正确的选择,在高三的下半学期,突然发奋图强,埋头苦读,在高考中取得佳绩,进入理想的大学。之后就回归本性,如风中柳絮,随风飘荡。工作后,也基本是不偏不倚,说不上努力,也不至于偷奸耍滑,偷工减料,一半是运气,一半是岁月积累,也算得到了外人看来还算不错的职位与待遇。

然我本也不是死心安逸之人,在一个平静的地方待久了,难免静极思动,常常梦中醒来,不甘这种平静如水的生活,想着今后还将从事着几十年如一日的工作,心中不甘,最终决定了离开。

经历了离职,旅行,再入职的过程,期间不过三、四个月。却也算真实感受当前的就业状况,没有想的那么好,也没有想的那么坏。在如今这个全民创业的互联网时代,你可以称之为激情,也可以称之为疯狂。中关村创业大街上,车库咖啡店里,各家电台,人人群情激昂,跟打了鸡血一样,讲述着各种创业成功的美好前景,满嘴是俗不可耐的痛点,估值千万,融资百万。在互联网的公司里,人人都在畅想有一天能躺着海滩上无忧无虑晒太阳的感觉。刚毕业的学生,年薪就20、30万。然而我又同时目睹着农民工兄弟工作难寻,待遇极低。世俗的规律自有它的道理,这是个最好的时代,也是个最坏的年代。

旅行回来的第二周,我进入一个私营小公司,工资待遇自然不如之前甚多,但我并不在意这些,可能很少有人能理解。但我不这么认为,一来我不太在意三瓜两枣的争夺,二来我一直认定付出多少,得到多少,能力多大,收获多大,如果付出与获得不成正比,不是公司开除我,就是我离开公司,开始的待遇不在我考虑范围内,还有就是公司老板真诚,对胃口,在一个咖啡厅,一杯咖啡使我与这个公司结缘。

与别人不同,这次的换公司对我来说是换种生活的方式。最明显的区别就是我从此关心风月,走进职场大军,挤公交,钻地铁,成为匆匆人流中的一个。清晨7点半,一阵间断、急促的铃声把我唤醒,洗漱完毕,背上电脑包出门;门口的早餐店已经早早的开门,老板熟练的擀面、抹油、加蛋、加菜,外加一杯鲜蘑豆浆,面目笑容递给我;走过天桥,随意一趟公交就能到地铁站;下地铁再走6、7分钟即到公司,开始一天的工作;基本上是心无旁骛,埋头编码,直到晚上6点;下班、买菜、做饭,吃完后已经8点;看看书,设计、管理、经济都涉略,有时不知不觉已到凌晨1、2点,等到结束一天的生活,已经横跨了两天。

一个月紧凑的工作生活,对我来说则是颠覆性的,连保持十多年的午休都戒掉了,外人看来可能觉得累,然而我除了坐久了有些腰酸,并没有觉得别的难受、不适应或者痛苦。细想来,我觉得还是个心态,同样的事,看法不同,理解不同,感受也不同。我像一个观众欣赏着每天遇到的每个人、每件事,像一个过客,感受着不同人群的喜怒哀乐,上下班路上如此,工作也如此,已经不觉得什么是累,什么是苦,什么是好,什么是坏。可我分明是他们中的一员,却像个过客从他们身边走过。

朋友说我快修神了,也许真是如此。淡淡的看待生命中的每一个过程,每一个经历,不知道能保持这种心态多久,但至少现在是如此,少了一些热血膨胀,多了一些平淡,却不是消极懒惰,只是尽力的做好每一件事,不关心别的人眼光,多了一丝心静、一份踏实,淡看风月,体悟人生。

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解和推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子和待分类文本。但实际应用中,类目和样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提高准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不高,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
内容概要:本文详细介绍了哈希表及其相关概念和技术细节,包括哈希表的引入、哈希函数的设计、冲突处理机制、字符串哈希的基础、哈希错误率分析以及哈希的改进与应用。哈希表作为一种高效的数据结构,通过键值对存储数据,能够快速定位和检索。文中讨论了整数键值和字符串键值的哈希方法,特别是字符串哈希中的多项式哈希及其优化方法,如双哈希和子串哈希的快速计算。此外,还探讨了常见的冲突处理方法——拉链法和闭散列法,并提供了C++实现示例。最后,文章列举了哈希在字符串匹配、最长回文子串、最长公共子字符串等问题中的具体应用。 适合人群:计算机科学专业的学生、算法竞赛选手以及有一定编程基础并对数据结构和算法感兴趣的开发者。 使用场景及目标:①理解哈希表的工作原理及其在各种编程任务中的应用;②掌握哈希函数的设计原则,包括如何选择合适的模数和基数;③学会处理哈希冲突的方法,如拉链法和闭散列法;④了解并能运用字符串哈希解决实际问题,如字符串匹配、回文检测等。 阅读建议:由于哈希涉及较多数学知识和编程技巧,建议读者先熟悉基本的数据结构和算法理论,再结合代码实例进行深入理解。同时,在实践中不断尝试不同的哈希策略,对比性能差异,从而更好地掌握哈希技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值