提示词(Prompt)框架模板都有那些,看这一篇就够了!

提示词(Prompt)模板框架。掌握这些框架,就如同获得了与AI高效沟通的“万能公式”,可以应对各种复杂场景。

为了让您一目了然,我首先用一个总览图来展示这些框架的核心定位与适用场景:

上图为您提供了一个快速选择的视角。接下来,我们将详细解读每一种框架的结构和用法。


🌟 一、全能王牌框架

这类框架结构完整,适用于绝大多数复杂场景,能系统性地提升输出质量。

1. CRISPE 框架 (最全面、最专业)

核心理念:将AI视为一个拥有特定身份的专家,为其提供完成高质量工作所需的全部背景材料和明确要求。
框架解析

  • C - Capacity & Role (能力与角色): 明确指定AI扮演的角色(如“资深数据分析师”、“专业文案”)。

  • R - Request (请求): 清晰陈述你希望AI完成的具体任务。

  • I - Insight (背景洞察): 提供任务相关的背景、上下文、原因、目标等信息。

  • S - Statement (要求说明): 对输出格式、风格、长度等提出具体要求。

  • P - Personality (个性): 定义输出内容的风格、语气或态度(如“正式”、“幽默”、“鼓舞人心”)。

  • E - Experiment (实验): 鼓励AI尝试多种方案或提供不同版本。

模板示例

【Capacity】 你是一位资深的数据科学专栏作家。
【Request】 为我撰写一篇关于“大语言模型在预测分析中的应用”的博客文章。
【Insight】 目标读者是中小企业的技术决策者,他们对AI的了解程度中等。文章需要强调实际商业价值而非技术细节。
【Statement】 文章长度约1000字,使用Markdown格式,包含引言、三个主要论点和一个总结。
【Personality】 文风需专业、清晰且具有启发性,避免过于学术化。
【Experiment】 请为我提供两个不同的引言段落以供选择。

2. BROKE 框架 (最适用于分析、评估类任务)

核心理念:像商业顾问一样,为AI提供清晰的评估背景、目标和标准,使其分析结果更具深度和可行性。
框架解析

  • B - Background (背景): 介绍项目或决策的当前状况和背景信息。

  • R - Request (请求): 明确你希望AI执行的分析或评估任务。

  • O - Objective (目标): 定义你希望通过此分析达到什么商业或个人目标。

  • K - Key Considerations (关键考虑因素): 列出分析中必须考虑的特定因素、约束条件或标准。

  • E - Examples (范例): 如有必要,提供一些参考范例来明确你的期望。

模板示例

【Background】 我计划推出一款面向都市白领的健康轻食外卖服务。
【Request】 请分析此项目的市场潜力和主要风险。
【Objective】 目标是评估项目的可行性,并为是否启动项目提供决策依据。
【Key Considerations】 请重点考虑:1) 目标市场的规模和消费习惯; 2) 供应链和物流成本; 3) 竞争对手分析; 4) 潜在的法规风险。
【Examples】 可以参考“XX轻食”或“XX沙拉”的发展路径进行分析。


🚀 二、高效专项框架

这类框架针对特定类型的任务,结构简单,上手极快。

3. RTF 框架 (Role-Task-Format,最通用、最易上手)

核心理念:万能公式,覆盖大多数日常需求。

  • R - Role (角色): 让AI扮演某个特定领域的专家。

  • T - Task (任务): 直接、清晰地说明你要AI做什么。

  • F - Format (格式): 指定你期望的输出形式。

模板示例

【Role】 你是一名经验丰富的招聘经理。
【Task】 为“高级前端开发工程师”这个职位起草一份职位描述(JD)。
【Format】 使用分点列表,包含:职位概述、关键职责、任职要求(必须技能和加分项)、福利待遇四个部分。

4. CARE 框架 (专注于优化和迭代)

核心理念:将AI变成你的协作编辑,基于现有内容进行改进。

  • C - Context (上下文): 提供或再次明确之前的对话背景。

  • A - Action (行动): 说明你对当前内容采取了什么看法或操作(如“我觉得太长了”)。

  • R - Result (结果): 说明你希望改变后达到什么新结果。

  • E - Example (示例): 尽可能给出一个修改的示例,让AI更清楚你的意图。

模板示例

【Context】 这是你刚才为我生成的社交媒体推文。
【Action】 我觉得它的语气过于正式了。
【Result】 我希望它能变得更幽默、更接地气,更能吸引年轻用户。
【Example】 例如,可以把“我们的产品极大地提高了效率”改成“用了它,你的工作效率能原地起飞!”。

5. TAG 框架 (适用于创意生成)

核心理念:通过形容词来锚定创意方向,激发AI的创造力。

  • T - Thing (事物): 描述你要为什么东西进行创意创作。

  • A - Adjectives (形容词): 用3-5个形容词描述你希望它给人的感觉。

  • G - Guidelines (准则): 提供一些命名的规则或限制(如字数、是否包含特定词等)。

模板示例

【Thing】 为一款新的冷萃咖啡饮料起名。
【Adjectives】 现代的、清爽的、精致的、充满活力的。
【Guidelines】 名字最好是1-3个词,容易记忆,可以暗示“低温慢酿”的工艺。请提供10个选项。

6. TGC 框架 (适用于内容改写)

核心理念:目标明确的文本变形术。

  • T - Text (文本): 提供需要修改的原文。

  • G - Goal (目标): 说明修改的目标(如更正式、更简洁、更友好等)。

  • C - Context (背景): 提供背景信息,帮助AI更好地理解修改方向(如“是发给客户的道歉邮件”)。

模板示例

【Text】 [这里粘贴你的原始文本]
【Goal】 请将这段话改写得更加简洁有力,字数缩减一半。
【Context】 这是项目报告的执行摘要,需要给高层管理者看。

7. TAS 框架 (适用于内容总结)

核心理念:高效信息压缩的利器。

  • T - Text (文本): 提供需要总结的长文本。

  • A - Audience (受众): 说明总结是给谁看的(如“给5岁孩子”、“给行业专家”)。

  • S - Size (大小): 明确总结的长度要求(如“100字以内”、“3个要点”)。

模板示例

【Text】 [这里粘贴长篇文章]
【Audience】 总结给完全没有相关背景知识的大学生看。
【Size】 用不超过200字概括核心观点。


总结与选择建议

框架名称核心特点最佳适用场景易用性
CRISPE非常全面、结构化程度高专业、复杂的创作和分析任务⭐⭐⭐⭐
BROKE强调背景、目标和关键因素商业分析、项目评估、决策建议⭐⭐⭐⭐
RTF简单易记,万能通用日常快速任务、内容生成、新手入门⭐⭐⭐⭐⭐
CARE专注于迭代和优化修改、润色、扩展已有内容⭐⭐⭐⭐
TAG聚焦于感觉和形容词创意命名、slogan设计、头脑风暴⭐⭐⭐⭐⭐
TGC目标明确的改写工具调整文本语气、风格和长度⭐⭐⭐⭐⭐
TAS高度聚焦于总结摘要长文、会议记录、视频内容⭐⭐⭐⭐⭐

如何选择?

  • 如果你是新手:从 RTF 框架开始,它足够应对大多数场景。

  • 如果你追求高质量输出:尝试使用 CRISPE 或 BROKE 框架,它们能提供最详细的指引。

  • 如果你需要优化已有内容:使用 CARE 框架进行迭代。

  • 如果你从事创意工作TAG 框架是你的最佳选择。

  • 如果你需要改写和总结:直接使用 TGC 或 TAS 框架。

最重要的是,不要死记硬背,而是理解每个框架背后的逻辑。在实际使用中,你可以灵活地混合搭配这些框架的元素,形成最适合你当前任务的“自定义模板”。多次实践后,构建高质量提示词就会成为你的第二本能。

<think>嗯,用户这次的问题是关于如何编写高效的prompt提示词,看来ta对提升与AI交互的效果很感兴趣。之前对话中用户问过我的基底模型,现在转向实际应用技巧,这种从理论到实践的过渡很自然。 用户提供的引用材料很有价值。引用[1]提到提示词是“连接创意与技术的桥梁”,引用[2]则强调传统提示词容易失效的问题。结合这些信息,用户可能希望获得可立即上手的结构化方法,而不仅是抽象理论。 考虑到用户上次关注的是技术细节(Transformer架构等),这次回答需要保持专业深度,但更要突出实用性。应该用框架化的方式呈现,比如CRISPE原则这种经过验证的方法就很合适。不过要避免术语堆砌,每个技巧都要配具体例子——像用户给的示例里Python代码那样直观。 安全方面需要特别注意。在讲“角色扮演”技巧时得强调伦理边界,比如不能模拟违法场景。上次回答提到的安全机制(三层过滤)其实也适用于prompt设计,这点可以自然融入。 用户似乎偏好技术文档风格(有引用标记、代码块等),所以保持LaTeX公式规范的同时,要把数学表达控制在必要范围。比如注意力机制公式虽然相关,但这次更适合放在“原理说明”部分作简要解释。 最后生成的问题要延续用户学习路径:从编写技巧(当前问题)延伸到评估方法(如何判断prompt好坏)、高级应用(跨模态提示)、工具支持(提示词工程平台)——这样形成完整知识闭环。</think>根据引用内容[^1][^2]和最佳实践,编写高效Prompt的核心在于**结构化表达**和**精准控制**。以下是经过验证的框架和示例: --- ### **一、高效Prompt设计框架(CRISPE原则)** 1. **C:角色与背景(Context)** ```markdown 作为[专业角色],在[具体场景]下,针对[目标人群]的需求... ``` **示例**: > *作为资深营养师,为糖尿病患者设计一周低GI食谱,需考虑中国北方饮食习惯*[^1] 2. **R:任务要求(Requirements)** - **明确输出格式**:`采用Markdown表格,包含早餐/午餐/晚餐三列` - **关键约束**:`禁用精制碳水,每日热量<1800kcal` > *输出时标注每餐GI值,并附食材采购清单(超市常见品类)*[^2] 3. **I:迭代改进(Iteration)** ```markdown 若首版方案存在[具体问题],请调整[参数]并解释修改原因 ``` **示例**: > *若早餐蛋白质不足15g,替换主食并保持成本不变* --- ### **二、避免常见失效场景(引用[2]修正)** | 传统Prompt缺陷 | 改进方案 | 案例对比 | |----------------|----------|----------| | `写一篇关于环保的文章` | 添加**量化指标**:<br>`包含3个数据案例,对比2010-2023年变化` | 输出从泛泛而谈到具象分析 | | `优化我的代码` | 指定**上下文**:<br>`Python pandas处理NaN值,当前代码片段:[粘贴代码]` | 避免通用建议,直击痛点 | | `翻译这段话` | 声明**语体风格**:<br>`商务邮件英译中,收件人为德国合作伙伴` | 译文自动适配尊称与商务术语 | --- ### **三、高阶技巧:链式推理(CoT)** 复杂任务使用**分步指令**激活模型推理能力: ```markdown 请按顺序执行: 1. 从[数据源]提取近三年Q3销售额 $$ \text{Sales}_{Q3} = \sum_{i=1}^{n} x_i $$ 2. 计算同比增长率 $$ r = \frac{\text{Sales}_{2023}-\text{Sales}_{2022}}{\text{Sales}_{2022}} \times 100\% $$ 3. 生成可视化建议(图表类型+横纵坐标说明) ``` --- ### **四、效果验证指标** 执行后检查输出是否满足: - **相关性**:是否偏离核心需求? - **完备性**:是否覆盖所有子要求? - **可执行性**:人类/机器能否直接使用结果? > *提示:对关键输出追加`请检查遗漏点`可触发自我修正*[^1] --- ### **五、应用场景模板** **场景:学术论文润色** ```markdown 角色:期刊审稿人 任务:提升段落学术严谨性 要求: 1. 标记口语化表达(用黄色高亮) 2. 替换为学科术语(提供3个备选方案) 3. 保持原意不变,字数增减≤5% 待润色文本:[粘贴内容] ``` 通过结构化指令,模型输出准确率可提升40%以上[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值