信息学奥赛一本通 1188:菲波那契数列(2) | OpenJudge NOI 2.3 1760:菲波那契数列(2)

本文介绍了解决斐波那契数列问题的两种有效方法:递推法和迭代法。通过预计算斐波那契数列的前10^6项并存储结果,实现快速响应多次查询需求,同时确保计算结果对1000取模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目链接】

ybt 1188:菲波那契数列(2)
OpenJudge NOI 2.3 1760:菲波那契数列(2)

【题目考点】

1. 求斐波那契数列

多种方法求斐波那契数列

【解题思路】

该题可能求到斐波那契数列第 1 0 6 10^6 106项,那么可以选择迭代、递推等方法。
该题出现在递推的章节,那么主要关注用递推法解该题。
该题有多组询问。可以先求出斐波那契数列的前 1 0 6 10^6 106项,然后针对每次询问取数组中的一项。

题目要求对结果取模1000,那么递推关系为: a i = ( a i − 1 + a i − 2 ) % 1000 a_i = (a_{i-1}+a_{i-2})\%1000 ai=(ai1+ai2)%1000,每次计算后都取模1000即可。

【题解代码】

解法1:递推
#include <bits/stdc++.h>
using namespace std;
int a[1000005];
int main()
{
    int n, x; 
	a[1] = a[2] = 1;
	for(int i = 3; i <= 1000000; ++i)//先求出斐波那契数列前1000000项 
		a[i] = (a[i-1]+a[i-2])%1000;
	cin >> n;
	for(int i = 1; i <= n; ++i)//n次询问 
	{
		cin >> x;
		cout << a[x] << endl;
	}
	return 0;
}
解法2:迭代
#include<bits/stdc++.h>
using namespace std;
int main()
{
    int ct, p;
    cin >> ct;
    for(int i = 1; i <= ct; ++i)
    {
        cin >> p;
        if(p <= 2)
            cout << 1 << endl;
        else 
        {
            int a = 1, b = 1, t;
            for(int j = 3; j <= p; ++j)
            {
                t = b;
                b = (a + b) % 1000;
                a = t;
            }
            cout << b << endl;
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值