
数学
I AM A BIG SHARK
Just keep learning!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
典型关联分析 CCA
典型关联分析(Canonical Correlation Analysis,以下简称CCA)是最常用的挖掘数据关联关系的算法之一。比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能力和跳远能力的数据。那么我们能不能说这两组数据是相关的呢?CCA可以帮助我们分析这个问题。1. CCA概述 在数理统计里面,我们都知道相关系数这个概念。假设有两组一维的数据集X和Y,则相关系数ρρ的定义为: 其中是X和Y的协方差,而分别是X和Y的方差。相关系数ρ的取值为[-1,.转载 2020-09-16 17:40:26 · 622 阅读 · 0 评论 -
理解损失函数(理论)
数学准备连续随机变量的期望:假设X是连续的随机变量,f(X)是其概率密度函数,那么X的期望是:0-1损失函数:当f(x)=y时,等于1,当f(x)≠y时,等于0。性能度量与损失函数机器学习的三要素就是:表示,评估和优化。正如我们在《非参数模型》中提到的:机器学习分为表示、评估和优化。表示指的是将样本空间映射到一个合适的特征空间,一般地,我们更青睐于这样的表示是低维度的,是更加稀疏交互的,同时也希望是相互独立的。而评估指的是模型在数据上表现的量化形式,...转载 2020-06-08 17:47:09 · 2252 阅读 · 0 评论 -
矩阵 QR分解法
关于如何求一个矩阵A的特征向量X和特征值λ,在上学时我们通常使用如下方法: AX =λX =λIX (I:单位阵) => |A -λI| = 0 => 求出λ =>代入AX =λX求出X 但在...转载 2019-06-25 16:04:30 · 10974 阅读 · 0 评论 -
最小二乘法 几何意义
上次写了篇文章来阐述几何投影与傅里叶级数的联系,今天我想谈谈几何投影与最小二乘法的联系,这种联系的好处是不管多复杂的公式,又可以被瞬间记住了。本文的中心思想是:最小二乘法中的几何意义是高维空间中的一个向量在低维子空间的投影。这个思想在MIT教授GilbertStrang的线性代数的公开课程上有讨论,这里我会把这个思想详细的阐述一遍。文章最后会把傅里叶级数和最小二乘法放在一起做个比较和总结,希望大...转载 2019-07-17 15:43:43 · 3612 阅读 · 0 评论 -
最小二乘法 几何意义
上次写了篇文章来阐述几何投影与傅里叶级数的联系,今天我想谈谈几何投影与最小二乘法的联系,这种联系的好处是不管多复杂的公式,又可以被瞬间记住了。本文的中心思想是:最小二乘法中的几何意义是高维空间中的一个向量在低维子空间的投影。这个思想在MIT教授Gilbert Strang的线性代数的公开课程上有讨论,这里我会把这个思想详细的阐述一遍。文章最后会把傅里叶级数和最小二乘法放在一起做个比较和总...转载 2019-07-10 11:09:26 · 1318 阅读 · 0 评论 -
显著性检验,T-test,P-value
备注:源:https://www.cnblogs.com/hdu-zsk/p/6293721.html显著性检验,判...转载 2019-07-10 17:38:00 · 6151 阅读 · 0 评论