08_构建知识图谱几种方式

本文探讨了知识图谱从人工构建到自动化构建的发展历程及现状,重点介绍了自动化构建的主要流程和技术挑战,同时概述了知识图谱在智能问答、推荐系统等场景的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

博文配套视频课程:自然语言处理与知识图谱


人工 VS 机器构建

从构建技术看,一般由三种形式:自上而下 (适合专业领域),自下而上 (适合公共领域),众包知识图谱 (适合公共领域)

知识图谱经历了由人工构建到群体智慧构建到自动获取、构建的过程。人工构建和自动化构建各有优缺点,而现阶段要兼顾效率和精度,最合理的方式是半自动化结合人工。 目前业内构建知识图谱很少见纯人工和全自动方法,采用的主流方式是半自动结合人工方式,约占 80% 以上。

在这里插入图片描述

自动化构建流程

实现全面自动化构建知识图谱还有很长的一段路要走,不过已有不少企业在积极探索降低人工参与度,提升自动化构建水平。其自动化构建流程主要包括

  1. 本体创建
  2. 数据标注
  3. 模型训练
  4. 知识抽取
  5. 知识融合
  6. 知识推理
  7. 知识更新

在这里插入图片描述
知识图谱自动构建的过程中主要运用到了自然语言处理、小样本训练、领域迁移等关键的 AI 技术。自动化构建知识图谱有四大技术重点:如何自动化的从结构化数据库映射为知识图谱并做知识融合;如何通过小样本学习和领域知识迁移的技术减少人工标注成本;如何从非结构化文本中做篇章级的事件抽取和多事件关联;基于深度学习的知识表示在各个构建的环节的应用

构建挑战

目前,知识图谱在构建过程中面临着诸多挑战,主要的技术挑战点有三项:信息丢失:指应该抽取出来的信息没有抽全;信息冗余:指在输入文本中不存在但在背景知识中存在的额外概念和关系;信息重叠:指能否将原文中距离跨度较大的属性归结到正确的实体上,并对动态变化的属性进行适当存储。此外,知识图谱构建成本高昂,小样本的抽取和构建问题,也是业界公认的难题。

应用实践

目前自动化构建的知识图谱主要运用在智能问答、智能推荐、语义搜索、网络行为动态分析等场景中。由于需要大量领域专家的干预,很多特定领域的知识图谱自动化构建的进展有些缓慢,尤其在一些小规模、应用场景复杂、专家知识密集的场景。
不可否认的是知识图谱需要运用到广阔的业务场景里才能够发挥出它的真正价值。

在这里插入图片描述

在这里插入图片描述

### 知识图谱智能问答系统的构建方法分类 知识图谱智能问答系统的构建方法可以根据其技术实现路径和技术特点分为以下几类: #### 1. 基于规则的方法 这种方法依赖预定义的规则集来匹配问题模式并提取所需的关系和实体。它通常涉及自然语言处理技术和正则表达式的组合,以便识别特定类型的查询并将它们映射到知识图谱中的相应节点或边[^2]。 #### 2. 基于机器学习的方法 此类方法利用监督学习算法训练模型以自动解析用户的自然语言输入,并将其转化为针对知识图谱的有效查询。常见的做法是从大量标注的数据集中学习如何将问句转换成结构化的查询形式(如SPARQL),从而检索出正确的答案[^4]。 #### 3. 深度学习驱动的方式 随着深度神经网络的发展,特别是序列到序列(Seq2Seq)架构的应用,使得端到端的学习成为可能。这类方案可以直接接受原始文本作为输入并通过复杂的嵌入层捕捉语义特征,在此基础上生成对应的逻辑形式或者直接预测最终的结果[^3]。 #### 4. 组合策略 实际应用中往往不是单一采用上述某一种方式而是综合运用多种手段形成混合型解决方案。比如先用简单的模板匹配初步过滤掉一些容易解决的情况;对于复杂场景再调用高级别的ML/DL组件做深入分析处理等等[^5]。 ```python def example_sparql_query(): """ A simple SPARQL query to demonstrate how a question might be translated. This is an illustrative code snippet and not executable directly. """ sparql = ''' PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT ?director WHERE { <The_Shawshank_Redemption> <directedBy> ?director . } ''' return sparql ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值