基于传感器的机器人物理交互框架解析
1. 机器人与环境交互现状
在机器人领域,已有不少机器人在模拟生物能力和执行特定任务方面取得进展。例如,有的机器人模仿服务犬能力,通过抓住毛巾来操作门和抽屉;还有为老年人护理设计的 Care - O - bot II,其机械臂能执行基于视觉的取放任务。人形机器人虽多专注于运动研究,但也有部分用于操作任务,像 Armar - III 机器人和 HRP - 2。
不过,目前机器人在实际应用中存在一些限制因素。在已有的应用里,如清洁、轮廓跟踪、装配和开门等任务,多数已发表的应用仅为特定动作提供专门控制器,难以扩展到不同任务或系统。而且,部分情况下机器人可靠性因缺乏足够传感器反馈而受限。
我们认为,现实环境中实际用手进行物理交互任务的机器人数量少,原因之一是缺乏完善的方法来进行抓取和任务的指定、规划以及实时可靠控制。抓取和任务的联系在相关研究中很少被考虑,然而在实际中,任务需求对抓取选择至关重要,反之,抓取状态在任务执行中也极为关键。目前,抓取规划、任务规划和基于传感器的控制等方法未被视为相关问题,也未从统一框架进行处理。因此,需要一种更通用的操作方法,将抓取和任务在基于多传感器信息的全局框架中共同考虑,以实现实时可靠的物理交互,赋予当前机械臂类似运动能力的先进功能。
2. 我们的方法
2.1 任务导向抓取与抓取导向任务
我们主张将与任务相关的方面引入经典的基于知识的抓取概念中,形成任务导向抓取。同样,在任务执行过程中考虑与抓取相关的问题,形成抓取导向任务。在抓取选择中考虑任务相关方面,能使机器人处理远超简单取放的广泛任务,从而提高机器人的通用性。此外,在执行任务动作时监督和控制抓取配