如何通过yarn方式执行spark-shell

本文介绍如何通过编写Shell脚本来启动Spark Shell,并设置资源参数,包括内存分配、核心数、执行器数量等,以实现更高效的数据处理任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写一个sp_sh.sh,内容:

/home/lsx/soft/spark-2.1.1-bin-hadoop2.7/bin/spark-shell \
 --master local[5]  \
 --driver-memory 5G \
 --num-executors 10 \
 --executor-cores 3 \
 --executor-memory 2G --conf spark.cores.max=30\
 --queue default --conf spark.driver.maxResultSize=10G \
 --conf spark.yarn.executor.memoryOverhead=2G \
 --jars /home/lsx/Downloads/spark-sql-kafka-0-10_2.11-2.2.1.jar

如果只是简单的在本地执行则:

/home/lsx/soft/spark-2.1.1-bin-hadoop2.7/bin/spark-shell   --master local[5]  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值