
sklearn
文章平均质量分 61
通过学习sklearn的一些功能以及源代码,去理解基于统计的,非深度学习的小而美的机器学习方法
旺旺棒棒冰
做正确的事,正确得做事
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
sklearn模型持久化
在用sklearn训练了模型之后,需要保存模型,以便日后使用。下面介绍了关于如何持久化sklearn模型的方法。可以使用python自带的pickle模块保存和加载模型,下面是用SVM做iris数据集分类的例子。>>> from sklearn import svm>>> from sklearn import datasets>>> clf = svm.SVC()>>> X, y= datasets.load_iris(re翻译 2021-08-12 18:26:07 · 364 阅读 · 0 评论 -
sklearn.preprocessing之数据预处理
sklearn.preprocessing 提供了多个数据预处理类和方法,将原始特征向量转换为更适合于下游模型的表示。Standardization 标准化对训练样本中的每个属性计算均值和方差,然后进行标准化:xxxfrom sklearn import preprocessingimport numpy as npX_train = np.array([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]])scaler = preprocessing.Sta翻译 2021-08-04 19:27:41 · 459 阅读 · 0 评论