机器学习的拟合

机器学习中的核心问题是拟合,它衡量模型对训练数据的适应程度。过拟合发生于模型过于复杂,对训练数据过度学习,导致预测方差增大;而欠拟合则是因为模型能力不足,无法捕捉数据复杂性,使得预测与训练数据相差较大。理解并避免这两种情况是优化模型性能的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优秀的机器学习算法不能取极端,而是一个合适的平衡的状态

  1. 拟合是机器学习的基本问题,也是评判学习质量的标准。
  2. 对未曾出现在训练集中的样本能够进行正确预测。

过拟合(书呆子认死理):预测结果方差太大

情况:常在模型学习能力较强,而数据复杂度较弱的情况下出现。
过拟合的输出

欠拟合(呆子,说的都是错的):预测和训练集差的太远

情况:模型学习能力较弱,而数据复杂度较高的情况下出现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值