- 博客(834)
- 资源 (3)
- 收藏
- 关注
原创 交叉验证与超参数调优Python机器学习中的核心实践
交叉验证(Cross-Validation)是一种常用的技术,用于评估模型在独立数据集上的表现。其基本思想是将数据集分成K个大小相等的子集,每次使用其中一个子集作为验证集,其余K-1个子集作为训练集,重复K次,最终平均所有验证结果。嵌套交叉验证(Nested Cross-Validation)是一种更为严格的评估方法,它将超参数调优与模型评估结合起来,通过多层的交叉验证来减少过拟合的风险。网格搜索(Grid Search)是一种系统的超参数调优方法,它通过遍历所有可能的超参数组合,找到最优的配置。
2025-07-08 10:49:40
503
原创 机器学习模型优化过拟合与欠拟合的平衡
以多项式回归为例,当多项式阶数过高时,曲线会穿过所有训练样本点(如图1左),但测试误差显著增大。在计算机视觉等领域,数据增强(Data Augmentation)通过旋转、平移等变换扩充训练集,提升模型鲁棒性。正则化通过在损失函数中添加惩罚项,限制模型复杂度,是防止过拟合的核心方法。特征选择方法(如递归特征消除、基于模型的选择)可降低维度,特征缩放(标准化、归一化)对距离敏感模型至关重要。对于神经网络等复杂模型,早停(Early Stopping)通过监控验证性能提前终止训练,防止过拟合。
2025-07-08 10:48:56
279
原创 机器学习模型评估指标与Python实现
准确率是分类问题中最常用的评估指标之一,定义为模型预测正确的样本数占总样本数的比例。AccuracyTPTNTPTNFPFNAccuracyTPTNFPFNTPTN: 真正例,模型正确预测为正类的样本数。: 真负例,模型正确预测为负类的样本数。: 假正例,模型错误预测为正类的样本数。: 假负例,模型错误预测为负类的样本数。
2025-07-08 10:47:58
242
原创 [QMT量化交易小白入门]-六十九、ETF动量评分策略,历史年化收益率107%
C . bar_date } 跳过') returnC . bar_date } 跳过') returnC . bar_date } 跳过') return作用:如果当前不是回测模式且不是最后一根K线,则记录日志并跳过本次任务。这是为了避免在实时交易中对尚未完成的数据进行处理。
2025-07-07 10:06:52
637
原创 监督学习与无监督学习Python视角下的算法实践与对比分析
监督学习是一种基于已知输入和输出(标签)数据进行训练的机器学习方法。其核心目标是学习一个从输入到输出的映射函数,使得模型能够对新的未知数据进行准确预测。监督学习的任务通常分为分类和回归两大类。分类:预测离散标签,如判断邮件是否为垃圾邮件、识别图像中的物体类别等。回归:预测连续值,如房价预测、股票价格预测等。无监督学习是一种不依赖于带标签数据的机器学习方法,其核心目标是发现数据中的内在结构或模式。无监督学习的任务通常包括聚类、降维和密度估计等。
2025-07-07 09:25:45
266
原创 机器学习核心概念与Python代码解析
这两种方法都有助于降低数据的维度,提高模型的训练效率。模型部署是将训练好的模型应用到实际生产环境中的过程。交叉验证是一种评估模型性能的技术,通过将数据集分成多个子集,并在这些子集上多次训练和验证模型,从而减少过拟合的风险。数据标准化和归一化是处理数据的重要步骤,它们可以将不同尺度的特征转换为同一尺度,从而提高模型的收敛速度和性能。PCA是一种降维技术,通过保留数据中方差最大的方向,将高维数据投影到低维空间。决策树是一种基于树结构的分类与回归方法,而随机森林则是通过集成多个决策树来提高模型的性能和鲁棒性。
2025-07-07 09:25:02
291
原创 高频量化被打压,个人量化春天来了吗
最近量化圈炸锅了!沪深交易所7月7日起实施新规,专门针对高频量化交易"踩刹车"。每秒300笔以上的申报要被重点监管,撤单费直接涨了10倍!这波操作下来,那些靠"手速"吃饭的高频策略怕是要凉凉了。
2025-07-05 22:18:10
629
原创 探索Python数据科学工具链NumPyPandas与Scikit-learn
Scikit-learn是一个简单高效的Python机器学习库,它建立在NumPy、Pandas和Matplotlib之上,为数据科学家和机器学习从业者提供了丰富的算法实现和工具。NumPy是Python中用于科学计算的核心库,它提供了一个强大的N维数组对象,以及大量的数学函数库,能够高效地进行向量和矩阵运算。为了更好地理解上述工具链的应用,下面通过一个具体的案例来展示如何从原始数据出发,经过处理、分析,最终构建并评估一个机器学习模型。假设有一个关于员工信息的CSV文件,包含员工的年龄、部门、薪资等信息。
2025-07-04 09:46:31
901
原创 机器学习数学基础与Python实现
例如,正态分布(高斯分布)在许多自然现象中都有很好的近似。在机器学习中,拉格朗日乘数法常用于支持向量机(SVM)中的对偶问题求解。梯度下降法是一种优化算法,用于寻找函数的局部最小值。在机器学习中,通常使用梯度下降法来最小化损失函数。最大似然估计是一种参数估计方法,它通过最大化似然函数来找到模型参数的估计值。特征值和特征向量在许多机器学习算法中都有应用,特别是在主成分分析(PCA)和谱聚类中。,其中每一行代表一个样本,每一列代表一个特征。在机器学习中,数据通常以矩阵或向量的形式表示。\theta$的梯度。
2025-07-04 09:45:48
583
原创 Python机器学习基础从零到实战入门
将利用公开的房价数据集,通过数据预处理、特征工程、模型选择与训练、评估与调优等步骤,构建一个能够准确预测房价的模型。交叉验证是一种评估模型泛化能力的技术,通过将数据集分成多个子集,轮流用其中一部分作为测试集,其余作为训练集。根据问题的性质,可以选择多种模型进行尝试,如线性回归、决策树、随机森林等。在这里,以随机森林为例进行训练。接下来,对数据进行特征工程,包括编码分类变量、创建新特征等,并进行探索性数据分析以了解数据特性。通过可视化和统计方法探索数据的基本结构和关系,有助于理解数据特性和选择合适的模型。
2025-07-04 09:38:07
388
原创 Windows环境下文件传输至容器的技术实现
容器文件系统采用分层存储机制,由只读镜像层和可写容器层组成。当从Windows主机向容器传输文件时,实际上是在修改容器的可写层。SCP(Secure Copy Protocol)基于SSH协议栈,提供加密的文件传输通道。需检查容器sshd_config中的。
2025-07-04 09:37:24
383
原创 容器端口映射的实现原理与实践方法
当数据包到达宿主机的某个端口时,iptables规则负责将其转发到容器的对应端口。容器技术通过Linux内核的namespace机制实现了网络隔离,每个容器拥有独立的网络命名空间。当在宿主机上启动一个容器时,默认情况下,容器的网络栈与外部是完全隔离的。容器内的进程看到的网络环境与宿主机完全不同,就像运行在一台独立的机器上。在非Linux平台上运行Docker时(如Windows上的Docker Desktop或macOS上的Docker for Mac),由于底层架构差异,端口映射的实现有所不同。
2025-07-04 09:36:29
959
原创 散户渡劫指南:从炼气期到化神期的量化之路
经常有人问我普通人怎么学习量化交易,我就在想怎么学了量化就不是普通人了吗,可能他的意思是类比修仙,量化素人如何修炼进阶,今天就将量化学习每个阶段均对标修仙境界的核心能力与心法要诀一一介绍,助你从“交易凡人”蜕变为“量化金仙”。
2025-07-02 22:51:40
926
原创 自动化Docker容器化安装与配置工具介绍
Docker 容器化是一种轻量级的虚拟化技术,通过将应用程序及其依赖项打包到一个可移植的容器中,实现了跨环境一致性和高效部署。Docker 容器共享宿主机的内核,相比传统虚拟机技术,具有资源占用更少、启动速度更快、部署更加灵活的优势。Docker Compose 是一个用于定义和运行多个 Docker 容器的工具。通过一个 YAML 文件(docker-compose.yml),可以配置应用程序的各个服务、网络、卷等。
2025-07-02 10:14:48
728
原创 企业级Docker容器化集群安装与配置方案
在现代企业IT基础设施中,容器化技术已经成为构建高效、灵活和可扩展的应用部署方案的核心。Docker作为容器化技术的代表,通过将应用程序及其依赖项打包到一个单独的容器中,实现了跨环境一致性和高效的资源利用。然而,单独的Docker容器难以满足企业级应用的复杂需求,尤其是在高可用性、负载均衡和大规模部署方面。因此,企业级Docker容器化集群的安装与配置成为必然选择。
2025-07-01 11:46:57
603
原创 Docker容器化环境搭建全流程从安装到配置
创建网络运行容器并连接到自定义网络通过本文的介绍,读者可以了解 Docker 的安装、配置、应用开发、数据持久化、网络配置、安全与优化、故障排查与日志管理,以及扩展与集群管理的全流程。Docker 作为一种容器化技术,极大地简化了应用的开发、部署和管理过程。通过实践和不断学习,读者可以更好地掌握 Docker 的使用技巧,并将其应用到实际项目中。
2025-06-26 10:25:27
1003
原创 Docker容器化网络原理桥接主机覆盖网络全解析
Docker 的桥接网络是容器化环境中最常用的网络模式。默认情况下,Docker 容器会使用桥接网络(bridge)进行通信。桥接网络通过在宿主机上创建一个虚拟的以太网桥(通常命名为docker0),将所有容器连接到这个桥接设备上,从而实现容器间以及容器与宿主机之间的通信。Docker 允许用户创建自定义的桥接网络,以满足不同的网络需求。
2025-06-26 10:23:51
577
原创 [QMT量化交易小白入门]-六十七、ETF日线或分钟数据增量下载
def _download_etf_data(stock_list , period , data_dir , default_days = 365) : """下载ETF数据核心函数Args:stock_list: ETF代码列表period: 数据周期 ('1d'或'1m')data_dir: 数据保存目录default_days: 默认下载天数Returns:dict: 包含所有下载数据的字典"""
2025-06-26 10:22:11
56
原创 Docker容器化网络中的服务发现机制与工具介绍
Etcd是一个高可用、分布式的键值存储系统,广泛用于服务发现和配置管理。Etcd通过其分布式架构提供高可用性和一致性,支持键值对的存储和查询。服务发现是Docker容器化网络中的关键机制,帮助应用实例动态注册和发现服务实例,实现高效的通信和扩展。在本文中,介绍了Etcd、Consul、Zookeeper、Kubernetes DNS和Docker Swarm等主流服务发现工具及其配置示例。通过合理选择和配置这些工具,开发者可以构建高可用性、可扩展的容器化应用。
2025-06-26 10:20:24
665
原创 数据持久化在Docker容器化应用中的解决方案
数据持久化是 Docker 容器化应用中的一个重要环节。通过合理的数据持久化方法和策略,可以确保应用程序的数据在容器生命周期之外持久存在,并在需要时能够快速恢复。无论是使用数据卷、数据卷容器、主机目录挂载,还是网络存储,每种方法都有其特点和适用场景。同时,数据的安全性和备份策略也是确保数据持久化的重要环节。通过合理的规划和实施,可以在 Docker 容器化应用中实现高效、安全、可靠的数据持久化。
2025-06-25 10:22:12
412
原创 Docker容器化存储卷的原理类型与使用方法
哈喽,大家好,我是左手python!Docker 支持多种类型的存储卷,包括本地卷、网络卷和第三方卷。每种类型的存储卷适用于不同的场景,满足不同的存储需求。
2025-06-24 10:28:33
245
原创 Docker容器化网络中的自定义网络配置与安全策略
尽管 Docker 提供了多种默认网络模式,但在实际应用中,开发者可能需要根据具体需求创建自定义网络。自定义网络可以通过命令实现。以下示例展示了如何创建一个自定义的bridge# 创建一个自定义 bridge 网络:指定使用bridge网络驱动。:指定子网网段。:指定 IP 地址范围。Docker 支持通过参数指定 IP 地址管理(IPAM)驱动。IPAM 驱动可以帮助自动分配 IP 地址,并支持更复杂的网络配置。以下示例展示了如何使用# 创建一个自定义网络,并指定 IPAM 驱动。
2025-06-24 10:26:49
690
原创 [QMT量化交易小白入门]-六十六、加入评分阈值后,历史回测收益率达到74%
技术指标计算"""对数收益率回归斜率和R平方""""""收益率""""""移动平均""":计算对数收益率的线性回归斜率和决定系数(R平方)。通过np.log取对数后,使用进行线性回归,返回斜率和R值。roc:计算指定窗口期的收益率,公式为(当前收盘价 / 窗口期前收盘价 - 1) * 100,用于衡量价格变化的百分比。ma:计算成交量的移动平均值,使用rolling方法计算指定窗口的均值,取最新值。
2025-06-23 16:20:18
1036
原创 Docker容器化网络模式解析与应用场景
Docker 容器化技术在现代应用部署中占据了重要地位,而其网络模式是实现容器间通信和资源管理的核心。Docker 提供了多种网络模式,每种模式适用于不同的场景和需求。理解这些网络模式的工作原理和应用场景,对于优化容器化应用的性能和安全性具有重要意义。Docker 的网络模式为容器化应用提供了灵活且高效的通信方式。通过合理选择和配置网络模式,可以优化应用的性能和安全性。在实际应用中,需要根据具体场景和需求,选择最适合的网络模式,并结合其他技术手段,实现高效、安全的容器化部署。
2025-06-23 16:11:11
778
原创 循环神经网络RNN与LSTMPython实战
LSTM的核心是细胞状态(Cell State),它通过三个门控单元(输入门、遗忘门、输出门)来控制信息的流动。与传统的前馈神经网络不同,RNN具有循环连接,能够将前一个时间步的隐藏状态传递给下一个时间步,从而捕捉序列中的时间依赖性。通过对比RNN和LSTM模型的训练过程和性能,可以发现LSTM在处理长序列时表现更稳定,收敛速度更快,且在复杂任务中具有更好的泛化能力。隐藏层的神经元不仅接收当前时间步的输入,还接收上一个时间步的隐藏状态,通过激活函数更新当前隐藏状态,并输出当前时间步的预测结果。
2025-06-19 11:58:09
592
原创 Docker容器化应用的动态扩展与收缩实践
对于一些特殊需求,可以使用自定义指标进行扩展。例如,根据HTTP请求数量进行扩展。# hpa.yamlmetadata:spec:selector:metrics:object:metric:target:value: 100动态扩展与收缩是优化Docker容器化应用性能和资源利用率的重要手段。通过合理的策略设计和工具选择,可以在实际应用中实现高效的动态扩展与收缩。
2025-06-19 10:11:04
608
原创 Docker容器化应用的备份与恢复策略
Docker 容器化应用的备份与恢复策略需要综合考虑数据备份、配置备份、应用状态备份等多个方面。通过合理的备份策略和恢复策略,可以有效保障容器化应用的业务连续性和数据安全性。在实际应用中,可以根据具体需求选择合适的备份工具和方法,并结合自动化、异地、加密、分散式和版本控制等高级策略,实现更高效、更可靠的备份与恢复。
2025-06-19 10:10:20
452
原创 [QMT量化交易小白入门]-六十五、加入钝化防抖后,历史回测收益率达到69.7%
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
2025-06-18 11:07:57
869
原创 Docker容器化应用的监控与故障排查实战
通过本文的介绍和实践,读者可以掌握 Docker 容器化应用的监控与故障排查方法。无论是系统资源监控、应用性能监控,还是日志管理与分析,都能帮助更好地管理和维护容器化应用。同时,通过建立完善的监控与告警体系,可以大大提高应用的稳定性和可靠性。
2025-06-18 11:06:09
413
原创 Docker容器化应用的端口映射与网络访问配置
Docker 提供了灵活的网络模型,允许用户自定义网络配置以满足不同的应用需求。默认情况下,Docker 使用bridge网络驱动,但在某些场景下,需要创建自定义网络以实现更复杂的通信需求。自定义桥接网络可以提供更好的隔离性和灵活性,适用于微服务架构中的多容器协作场景。步骤如下:创建自定义桥接网络使用创建一个新的桥接网络。配置网络参数可以通过--subnet--gateway等选项配置网络的子网和网关。运行容器并连接到自定义网络在启动容器时,使用--net或--network选项指定网络。
2025-06-18 11:05:26
406
原创 Docker容器化应用的日志管理与查看方法
Docker 容器化应用的日志管理是容器运维中的重要环节。Docker 提供了内置的日志机制,用于收集和管理容器运行时产生的日志信息。默认情况下,Docker 使用json-file驱动来存储日志,这些日志文件存储在宿主机的目录下,每个容器对应一个日志文件。Docker 容器化应用的日志管理与查看是容器运维中的重要环节。通过合理配置 Docker 的日志驱动和使用日志管理工具,可以实现对容器日志的高效管理和分析。
2025-06-17 09:53:08
884
原创 Docker容器化应用的资源限制与分配策略CPU内存等
通过合理配置 Docker 容器化应用的资源限制与分配策略,可以实现多个容器在同一宿主机上高效运行,避免资源竞争和性能瓶颈。在实际应用中,需要根据具体场景和需求,灵活调整 CPU、内存、设备和 I/O 资源的分配策略,以确保容器化应用的性能和稳定性。
2025-06-17 09:52:25
773
原创 监督学习、无监督学习、半监督学习和强化学习的区别
结合少量标注数据和大量未标注数据训练模型,解决标注成本高的问题。:通过已标注(输入-输出对应)的数据训练模型,预测新数据的输出。:从无标注数据中发现隐藏模式或结构,无明确输出目标。:智能体通过与环境交互,根据奖励信号学习最优策略。
2025-06-16 11:49:41
296
原创 [QMT量化交易小白入门]-六十四、因子归一化后,历史回测收益率达到61.3%
本策略旨在通过量化手段,对多个ETF进行综合评分,进而实现ETF的轮动配置。趋势分析:通过计算对数收益率的回归斜率,评估ETF的价格趋势。动量分析:计算不同时间窗口的收益率,衡量ETF的动量强弱。成交量分析:通过移动平均成交量,评估ETF的市场活跃度和资金流向。通过对上述三大指标进行加权求和,并采用极差归一化处理,策略不仅消除了不同ETF之间的绝对数值差异,使其具备横向可比性,还能在市场剧烈波动时自动压缩异常值的影响,确保评分的稳定性和可靠性。
2025-06-16 11:12:51
671
Python实现策略模式、观察者模式和责任链模式.md
2024-03-21
Python实现命令模式、中介者模式和解释器模式.md
2024-03-21
成本管理的理论.doc
2024-03-21
论项目成本管理.doc
2024-03-21
论文练习.doc
2024-03-21
计算机软件论文范文,相同背景不同主题的论文 论软件测试方法和工具的选择.doc
2024-03-21
计算机软件论文范文,相同背景不同主题的论文
2024-03-21
wechatbot-main.zip
2023-06-25
opencv-swig-master.zip
2023-06-25
chromedriver-win32.zip
2023-06-25
布林带突破策略(基于掘金客户端的python实现)
2020-08-29
bollings.py
2020-08-29
TA_Lib-0.4.18-cp36-cp36m-win_amd64.whl
2020-06-14
计算机软考系统分析师论文范文 - 副本 (5).docx
2024-03-21
计算机软考系统分析师论文范文 - 副本 (4).docx
2024-03-21
计算机软考系统分析师论文范文 - 副本 (3).docx
2024-03-21
计算机软考系统分析师论文范文 - 副本 (2).docx
2024-03-21
论集成测试及应用论文范文.docx
2024-03-21
计算机软考系统分析师论文范文 - 副本.docx
2024-03-21
计算机软考系统分析师论文范文.docx
2024-03-21
论企业集成平台的技术与应用.pdf
2024-03-21
软件过程的改进(参考).doc
2024-03-21
论系统的设计中对需求的把握.doc
2024-03-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人