本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
相关阅读
小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)
股票量化属于上限高,但下限低的标的,而ETF作为「一揽子股票」的集合,上限对普通人足够高,下限也比较高,基本不会有退市和跌停风险,天生具备分散风险、交易成本低的优势,量化中更偏向做ETF。之前的评分算法比较复杂,这几期文章用简单的加权平均算法,给大家介绍不同因子和权重对ETF轮动的影响,今天主要分享的趋势、动量、成交量三大核心信号评分,回测中实现年化收益32.7%,