本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
相关阅读
小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)
今天主要介绍深度学习在量化交易中的应用,对于金融数据来说是严格的时间序列数据,比较适合用LSTM 模型来处理。LSTM ( 长短期记忆网络 )是一种特殊类型的 循环神经网络 (RNN),通过引入记忆单元和门控机制,实现了对长距离依赖信息的有效存储与处理。
数据加载模块解析
def