本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。
QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。
相关阅读
小白也能做量化:零门槛QMT、Ptrade免费送
量化交易入门:如何在QMT中配置Python环境,安装第三方依赖包
年化收益达到了70%,增加了动态仓位权重调整后的全球核心资产轮动策略(含python代码解析)
有群友提供了思路,通过斜率和r2相乘作为评分,月度调仓,也有群友想要在聚宽上研究轮动策略,所以索性在聚宽平台上面进行了五年回测,效果还可以年化15.6,但是比目前带的轮动策略效果要差一些。动量因子通过捕捉资产价格持续上涨/下跌的趋势,显著提升策略收益(504.75% vs 121.78%),在2020-2023年A股结构性行情中(如消费、新能源板块趋势行情),动量因子有效放大收益,尤其是今年七八月涨势迅猛。