nlp文本分类task2多任务预训练模型优化

博客介绍了提升模型预测分数的方法,包括利用比赛及相同领域数据对模型预训练;去掉数据权重及损失值权重;采用更大的模型如xlnet、Roberta_large进行训练;利用伪标签,将训练好的模型预测测试集结果加入训练集重新训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据多次实验,发现有以下几个方式可以将模型预测分数提升:
1.模型预训练。利用比赛数据及相同领域数据对模型进行预训练。
2.去掉数据权重及损失值权重。实验表明,不加入数据权重及损失值权重(只将三个任务损失值权重相加)的效果反而会更好。
3.采用更大的模型进行训练。Roberta_large模型要优于bert模型,xlnet模型要优于Roberta_large模型。
4.利用伪标签进行训练。训练好的模型预测测试集。将预测结果加入到训练集中重新进行训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值