96. Unique Binary Search Trees 独一无二的二叉搜索树——卡特兰数的应用

题解:
与卡塔兰数 Catalan Number 有关
公式:
在这里插入图片描述
(dp[i] 表示当有i个数字能组成的 BST 的个数)
按照中序遍历的方式排列:左子树<根节点<右子树

n = 0 时,空树也算一种二叉搜索树,dp[0]=1;
n = 1 时,左右子树都是空树,左子树个数乘以右子树的个数, dp[0]*dp[0] = 1;
n = 2 时,1和2都可以为根,

dp[2] = dp[0] * dp[1]  (1为根的情况,则左子树一定不存在,右子树可以有一个数字)
    + dp[1] * dp[0]   (2为根的情况,则左子树可以有一个数字,右子树一定不存在)

n = 3 时,

dp[3] = dp[0] * dp[2]   (1为根的情况,则左子树一定不存在,右子树可以有两个数字)
    + dp[1] * dp[1]   (2为根的情况,则左右子树都可以各有一个数字)
    + dp[2] * dp[0]   (3为根的情况,则左子树可以有两个数字,右子树一定不存在)
由此可推出上述卡特兰公式。

class Solution{
public:
	int numTrees(int n){
		vector<int>dp(n+1);
		dp[0]=dp[1]=1;
		for(int i=2;i<=n;i++){
			for(int j=0;j<i;j++){
				dp[i]+=dp[j]*dp[i-1-j];
			}
		}
		return dp[n];
    }
};

Unique Binary Search Trees Ⅱ
上一题是求所有二分查找树的数量,这题是把所有二分查找树的结构写出来
在这里插入图片描述
参考链接: 动态规划 递归

//Divide and Conquer

class Solution{
public:
    vector<TreeNode*>generateTrees(int n){
        if(n==0) return {};
        vector<vector<TreeNode*>>dp(n+1);
        dp[0] = vector<TreeNode*>{ nullptr };
       // dp[1] = vector<TreeNode*>{ new TreeNode(1)};
        for(int i=1;i<=n;i++){
            for(int j=1;j<=i;j++){
                for(TreeNode* leftTree : dp[j-1]){
                    for(TreeNode* rightTree : dp[i-j]){
                        TreeNode* node = new TreeNode(j);
                        node->left = leftTree;
                        node->right = clone (rightTree, j);
                        dp[i].push_back(node);
                    }
                }                                
            }
        }
        return dp.back();
    }

private:
    TreeNode* clone(TreeNode* root, int offset){
        if (!root) return nullptr;
        TreeNode* temp = new TreeNode(root->val+offset);
        temp->left = clone(root->left,offset);
        temp->right = clone(root->right,offset);
        return temp;
    }
};

//recursive method

class Solution {
public:
	vector<TreeNode*> generateTrees(int n) {
		if (!n) return{};
		return generate(1, n);
	}
private:
	vector<TreeNode*> generate(int start, int end) {
		vector<TreeNode*> res;
		if (start > end) res.push_back(nullptr);
		else if (start == end) res.push_back(new TreeNode(start));
		else {
			for (int i = start; i <= end; ++i) {
				vector<TreeNode*> l = generate(start, i - 1);
				vector<TreeNode*> r = generate(i + 1, end);
				for(int j=0;j<l.size();++j)
					for (int k = 0; k < r.size(); ++k) {
						TreeNode* h = new TreeNode(i);
						h->left = l[j];
						h->right = r[k];
						res.push_back(h);
					}
			}
		}
		return res;
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值