
数学思想
文章平均质量分 89
luoganttcc
微信:luogantt2
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
如何才能学会代数几何,代数几何的前置学科是什么
学习代数几何需要 “代数工具 + 几何直觉 + 物理交叉”代数工具:抽象代数、交换代数、同调代数为技术核心;几何直觉:通过经典几何(曲线、曲面)与复几何(黎曼面)培养;交叉应用:结合数论、弦理论等领域的开放问题激发学习动力。坚持 “计算与证明并重”,逐步从具体例子过渡到抽象理论,是掌握代数几何的关键。原创 2025-04-18 17:26:50 · 1117 阅读 · 0 评论 -
Markdown 中的常用 LaTex 数学公式
原文链接常用数学LaTex公式$\sqrt{ab}$$\sqrt[n]{ab}$$\log_{a}{b}$$\lg{ab}$$a^{b}$$a_{b}$$x_a^b$$\int$$\int_{a}^{b}$$\oint$$\oint_a^b$$\sum$$\sum_a^b$$\coprod$$\coprod_a^b$$\prod$$\prod_a^b$$\bigcap$$\bigcap_a^b$$\bigcup$$\bigcup_a^b$$\bigsqcup$$\bigsqcup_a^b$$\bigvee转载 2020-07-31 15:09:17 · 426 阅读 · 0 评论 -
严加安测度论答案
链接原创 2019-08-28 14:38:50 · 2538 阅读 · 0 评论 -
布莱克斯科尔斯模型(六)写在最后
春节前后大时间概花了不到一个月在研究BS方程,因为工作中要用到股指期货delta对冲,对于方程怎么推导怎么求解大致明白了。曾经这个公式让两个人获得诺贝尔经济学奖,也曾经让一家非常豪华的对冲基金破产。长期资本1聪明的代价:长期资本管理公司二十周年祭 有人说,这是高斯分布惹的祸,我可以很明确的指出,说这话的人根本不懂BS方程,在求解方程的过程中,我们根本就没有引入正太分布假设。 我...原创 2019-02-12 20:35:59 · 1083 阅读 · 3 评论 -
布莱克斯科尔斯模型(五) 方程求解过程
原创 2019-02-12 20:05:02 · 1711 阅读 · 0 评论 -
布莱克斯科尔斯模型(三)热传导方程的解析解
原创 2019-02-11 18:50:03 · 2759 阅读 · 0 评论 -
布莱克斯科尔斯模型(二)之e^(-βt^2)的傅里叶变换
原创 2019-02-10 19:40:45 · 8482 阅读 · 3 评论 -
布莱克斯科尔斯模型(一)
这段时间我一直在研究BS模型,我可以毫不客气的说,那些搞金融毕业的根本无法理解BS模型,再求解BS模型时,不了解数学物理方程,傅里叶分析,复变函数是不可能理解BS方程的,并且学金融的几乎没学习过复变函数。所以,看到一个金融系的人在大谈特谈BS方程是非常可笑的…...原创 2019-02-10 18:41:51 · 3424 阅读 · 0 评论 -
世界层级划分
原创 2019-02-06 15:41:22 · 498 阅读 · 0 评论 -
混沌与分叉python 实现
import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dfrom math import sin,pidef logstic(k,x): # x1=0.6*x*(1-x) x1=k*sin(pi*x)# x1=λ*sin(pi*x) ...原创 2019-01-16 15:02:39 · 4004 阅读 · 0 评论 -
洛伦茨混沌
# -*- coding: utf-8 -*-"""Created on Tue Jan 15 12:23:53 2019 @author: luogantt""" import numpy as npimport matplo原创 2019-01-15 15:34:50 · 1398 阅读 · 0 评论 -
泊松方程与拉普拉斯方程数值解
原创 2019-01-24 22:00:42 · 7466 阅读 · 0 评论 -
罗素悖论
设集合S是由一切不属于自身的集合所组成,即“S={x|x ∉ S}”。那么问题是:S包含于S是否成立?首先,若S包含于S,则不符合x∉S,则S不包含于S;其次,若S不包含于S,则符合x∉S,S包含于S...原创 2019-01-03 22:48:53 · 1655 阅读 · 0 评论 -
拉格朗日对偶问题(Lagrange duality)
1 2 3转载 2018-04-23 18:47:10 · 279 阅读 · 0 评论 -
自然数的集合论定义
自然数可能有很多种定义方式,但最严格融洽的一种应该是建立在集合论基础之上。在集合论的观点下,一切数学对象都是集合(事实上都是空集构造出来的),包括自然数也是。0其实是空集,1是{空集},2是{空集, {空集}},3是{空集, {空集, {空集}}}……这种集合的集合是一种归纳集,事实上,自然数集被定义为所有归纳集的交集。运算的本质是映射,我们可以通过定义映射重建自然数运算规则,当然要使这些规则和通转载 2018-01-29 23:04:47 · 12251 阅读 · 0 评论 -
勾股数列
文章链接[2*n+1,2*n^2+2*n,2*n^2+2*n+1][2*n,n^2-1,n^2+1] n>=2原创 2018-02-01 16:24:56 · 505 阅读 · 0 评论