近期对数学爆发出了浓厚的兴趣,再加上准备参加2016年的数学建模美赛,于是开始接触数学建模,想通过这一系列的博客记录自己学习的历程,于是将本系列博客命名为【数学模型】,同我所看的数学建模书名。第一篇文章是一个非常简单的数学模型,但是我觉得挺有意思的,而且很贴近生活,题目叫做《椅子能在不平的地面上放平吗?》
模型假设
为了简化该问题,抛开一些非主干的问题,我们需要对问题做一些假设:
- 假设椅子的四条腿一样长,椅子腿与地面接触处抽象为一个点
- 椅子腿的四个点所构成的平面图形为正方形
- 地面高度是连续变化的,可以看做一个连续曲面
- 地面是相对椅子平坦的,在任何时候椅子至少要能有三条腿着地(地面不会出现深沟或者凸峰)
建立模型
首先,我们需要用数学语言来描述椅子的位置,因为我们假定椅子为正方形,我们可以通过以下图形来表示椅子的位置
如图,我们用椅子腿对角线 AC 与 x 轴的夹角 θ 来表示椅子的位置
其次,我们需要用数学语言来描述椅子腿距地面的距离,由于正方形的中心对称性,我们只需要设两个距离函数:
- A,C 两脚距离地面的距离和 f(θ)
- B,D 两脚距离地面的距离和 g(θ)
我们看到这两个函数都是关于椅子位置(θ)的函数,并且根据我们之前的假设3,我们可以知道这两个函数都是连续函数。
根据假设4(在任何时候椅子至少要能有三条腿着地),我们就可以得到,对于任意的 夹角 θ ,f(x) 与 g(x) 至少有一个为0